химический каталог




Курс общей химии

Автор Э.И.Мингулина, Г. Н.Масленникова, Н.В.Коровин, Э.Л.Филиппов

аллов.

т. е. частице с массой т, движущейся со скоростью v, соответствует волна длиной X; h — постоянная Планка.

Длину волны такой частицы называют длиной волны де Бройля. Для любой частицы с массой т и известной скоростью v длину волны де Бройля можно рассчитать. Идея де Бройля была экспериментально подтверждена в 1927 г., когда были обнаружены у электронов как волновые, так и корпускулярные свойства.

В 1927 г. немецким ученым В. Гейзенбергом был предложен принцип неопределенности, согласно которому для микрочастиц невозможно одновременно точно определить и координату частицы X, и составляющую рх импульса вдоль оси х. Математически принцип неопределенности записывают следующими уравнениями:

Ах Apxh;

AyApyh; (1.7)

AzAph.

Отсюда следует, что при точном определении координаты х микрочастицы исчезает информация о ее импульсе Др*, так как при х — О величина Ар*—»-оо. Если удастся снизить погрешность Др,то будет велика погрешность Ах. Источник этих погрешностей заключен не в приборах, а в самой природе вещей.

Поскольку постоянная Планка очень мала, то ограничения, накладываемые принципом неопределенности, существенны только в масштабах атомных размеров. Согласно принципу неопределенности, невозможно утверждать, что электрон, имеющий определенную скорость, находится в данной точке пространства, здесь можно использовать лишь вероятностное описание.

Для описания свойств электрона используют волновую функцию, которую обозначают буквой г|э (пси). Квадрат ее модуля |\J)|2, вычисленный для определенного момента времени и определенной точки пространства, пропорционален вероятности обнаружить частицу в этой точке в указанное время. Величину |\J)|2 называют плотностью вероятности. Наглядное представление о распределении электронной плотности атома дает функция радиального распределения. Такая функция служит мерой вероятности нахождения электрона в сферическом слое между расстояниями ги (r+ dr) от ядра. Объем, лежащий между двумя сферами, имеющими радиусы г и (г + dr), равен 4nr2dry а вероятность нахождения электрона в этом элементарном объеме может быть представлена графически в виде зависимостей функции радиального распределения. На рис. 1.2 представлена функция вероятности для основного энергетического состояния электрона в атоме водорода. Плотность вероятности \ty\2 достигает максимального значения на некотором конечном расстоянии от ядра. При этом наиболее вероятное значение г для электрона атома водорода равно радиусу орбиты ао, соответствующей основному состоянию электрона в модели Бора. Различная плотность вероятности дает представление об электроне, как бы размазанном вокруг ядра в виде так называемого

Рис. 1.2. Радиальное распределение вероятности пребывания электрона

для основного энергетического состояния атома водорода

электронного облака (рис. 1.3). Чем больше величина |гр|2, тем больше вероятность нахождения электрона в данной области атомного пространства.

В квантовой механике вместо термина «орбита» используют термин «орбиталь», которым называют волновую функцию электрона. Соответственно орбиталь характеризует и энергию и форму пространственного распределения электронного облака.

Расчеты в квантовой механике проводят с помощью предложенного в 1926 г. австрийским ученым Э. Шредингером уравнения, которое является математическим описанием электронного строения атома в трехмерном-пространстве.

В простейшем случае уравнение Шредингера может быть записано в виде

(1.8)

где h — постоянная Планка; т — масса частицы; U — потенциальная энергия; Е — полная энергия; х, у, z — координаты; \J) — волновая функция.

Решая уравнение Шредингера, находят волновую функцию = У, z)- Решение уравнения Шредингера возможно лишь при определенных значениях полной энергии Е. Определив вероятностную функцию \J), можно оценить величину |г|?|21/ — вероятность нахождения электрона в объеме пространства dVy окружающего атомное ядро. Решение уравнения Шредингера представляет сложную математическую задачу.

§ 1.3. КВАНТОВЫЕ ЧИСЛА И АТОМНЫЕ ОРБИТ АЛИ

Следствием решения уравнения Шредингера для атома водорода являются три квантовых числа, характеризующих поведение электрона в атоме. Эти же квантовые числа однозначно характеризуют состояние электронов любого атома периодической системы элементов.

Главное квантовое число п определяет энергию электрона и размеры электронных облаков. Энергия электрона главным образом зависит от расстояния электрона от ядра: чем ближе к ядру находится электрон, тем меньше его энергия. Поэтому можно сказать, что главное квантовое число п определяет расположение электрона на том или ином энергетическом уровне (квантовом слое). Главное квантовое число имеет значения ряда целых чисел от 1 до оо. При значении главного квантового числа, равного единице (я=1), электрон находится на первом энергетическом уровне, расположенном на минимально возможном расстоянии от ядра. Полная энергия такого электрона наименьшая.

Электрон, находящийся на наиболее удаленном от ядра энергетическом ур

страница 11
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

Скачать книгу "Курс общей химии" (2.81Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
Seiko QXC234S
ыли62
ремонт холодильников на дому
перечень работ сервисного обслуживания чиллера

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(17.01.2017)