![]() |
|
|
Биохимия. Химические реакции в живой клетке. Том 3йтероэтилен. Лихтенштейн и сотр. [13] предположили, что молекула N2 связывается между двумя молибденовыми центрами и получает электроны от обеих половин димерной структуры (рис. 14-1). Ввиду огромного практического значения для сельского хозяйства очень большой интерес представляла бы разработка более эффективных неферментативных процессов фиксации азота. Предпринимались многочисленные попытки создать модель нитрогеназы, имитирующую природный биологический фермент. Например, смесь цистеина и молиб-дата натрия в отношении 1 :1 обрабатывали таким восстанавливающим агентом, как NaBH4, считая, что в результате должен образоваться комплекс, содержащий Mo(IV). Этот комплекс должен был координационно связывать алкилнитрилы, способные восстанавливаться под действием NaBH4 на всех стадиях вплоть до алкена и аммиака [уравнение (14-11)]. Само собой разумеется, что эта реакция должна проходить в несколько стадий. Интересно, что ее скорость значительно увеличивается в присутствии АТР и соединений, содержащих железо-серный кластер; присутствие СО или N2 ингибирует реакцию [14, 15]. Таким образом, использованная, модельная система- по целому ряду признаков обнару* живает замечательное сходство с нитрогеназами. Сообщалось еще об одной модельной системе, в которой для восстановления N2 использовали несколько иной молибденовый комплекс н другой железо-серный кластер [16]. Однако для всех этих модельных систем скорости реакций оказываются значительно ниже тех скоростей, которые наблюдаются прн использовании самой нитрогеназы. Большой интерес представляют также попытки повысить эффективность биологической фиксации азота. Например, с помощью различных генетических манипуляций можно вызвать дерепрессию генов нитрогеназы. В результате выражение этих генов становится «конститутивным» (гл. 15, разд. Б,1), а это дает возможность получать бактерии, способные фиксировать азот в почве или в клубеньках значительно быстрее, чем это делают природные штаммы. Обычно гены нитрогеназы репрессируются при накоплении в клетках глутамина, о чем подробнее говорится в разд. Б, 2. Гены азотфиксации обнаружены только в прокариотах. Важным достижением в области сельского хозяйства явилось бы осуществление переноса этих генов (с сохранением их функциональной активности) в зеленые растения (гл. 15, разд. 3, 4). Б. Включение NHs в аминокислоты и белки До 1940 г. аминокислоты обычно рассматривались как относительно стойкие строительные блоки, поступающие в организм с пищей. От этих представлений быстро отказались после начатых Шёнкеймером исследований метаболизма 15NH3 и аминокислот, меченных изотопом 15N. Сразу же обнаружилось, что азот часто быстро переходит из одного углеродного остова в другой. Эти результаты подтвердили предположения, выдвинутые ранее Браунштейном (гл. 8, разд. Д). Браунштейн указывал, что С4- и Сб-аминокислоты, аспартат и глутамат, тесно связанные с циклом трикарбоновых кислот, способны быстро обменивать свои аминогруппы на аминогруппы других аминокислот путем переаминирования [уравнение (14-12), стадии бив]. Поскольку при этом аммиак легко включается в глутамат [уравнение (14-12), стадия а; ом. следующий раздел], нетрудно представить себе существование общего пути синтеза аминокислот. NH3 i'i а \\Переаминирование б \ ,, ^^^^ЗЙ* Asp • Карбамоип-tpocipam ^Movteana Вскоре стало ясно, что глутамин и аспарагин следует рассматривать как растворимые и нетоксичные переносчики дополнительного количества аммиака, заключенного в их амидных группах. Под действием активной синтетазы из глутамата и аммиака образуется глутамин [уравнение (14-12), стадия г], а под действием другого фермента происходит перенос амидного азота на аспартат с образованием аспарагина [уравнение (14-12), стадия д]. Амидный азот глутамина используется в многочисленных биохимических процессах, в том числе в образовании карбамоилфосфата [уравнение (14-12), стадия е; разд. В,2], глюкозами-на [уравнение (12-4)], NAD+ (разд. И), пуринов (разд. Л,3), СТР (разд. Л, 1), n-аминобензоата (разд. 3,3) и гистидина (разд. К). Глутамат, глутамин и аспартат играют центральную роль н в удалении азота из органических соединений [17]. Будучи реакцией обратимой, переаминирование обычно служит начальным этапом катаболизма избыточных аминокислот. В результате присоединения азота к кето-глутарату образуется избыточный глутамат, который дезаминируется с образованием аммиака и далее — глутамина. Глутамин может также отдавать свой азот на образование аспартата. В организме животного и аспартат, и глутамин (через карбамоилфосфат) являются предшественниками мочевины, главного экскреторного азотистого соединения. Все эти взаимосвязи суммированы в уравнении (14-12), а дальнейшие подробности будут даны в последующих разделах. Образование глутамата в результате восстановительного аминиро-вания представляет собой основной путь включения азота в состав аминогрупп, однако вполне возможно, что существуют другие пути. Так, например, высказывалось предположение, чТо у растени |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|