![]() |
|
|
Биохимия. Химические реакции в живой клетке. Том 2для ферментативной реакции, в ходе которой субстрат S превращается в продукты. / — касательная, наклон которой соответствует начальной скорости реакции; //—касательная к кривой в точке, соответствующей ненулевому моменту времени; наклон этой прямой меньше наклона касательной, проведенной в точке f=0. кривых для отдельных ферментов. Какой бы метод ни использовал экспериментатор, его интересует скорость, с которой изменяется во времени концентрация некоторого вещества. Весьма часто исследователь строит кинетическую кривую, представляющую собой временную зависимость концентрации реагента (субстрата) [S] или продукта [Р] (рис. 6-1), Скорость ферментативной реакции v определяется следующим образом: d [SI или1* f=-ar-. (6-1) Скорость химической реакции выражают обычно в моль^л-с)-1 (или М-с"*1), а энзимологи чаще пользуются размерностью моль* (л-мин)-1 2>. Мгновенная скорость, которая обычно интересует исследователя, определяется наклоном касательной к кинетической кривой в данной точке (рис. 6-1). Начальная скорость реакции — это скорость в нулевой момент времени. В некоторых случаях (например, для кривой, представленной на рис. 6-1) найти начальную скорость с достаточной точностью довольно сложно. Для ряда химических реакций, например для процессов первого порядка, график кинетической кривой в полулогарифмическом масштабе '> Следует отметить, что равенство скоростей расходования субстрата и накопления продукта справедливо лишь при стационарных условиях (разд. А,5). ?) Для выражения скорости следует всегда использовать интенсивные параметры (например, Мет-1), а' не экстенсивные (например, хкиоль-о'1 J$ea указания объем* раствора). " {т. е. график зависимости lg[S] от t) представляет собой прямую, поэтому необходимость в определении наклона касательной в нулевой момент времени отпадает. Однако в большинстве случаев определение активности проводят таким образом, чтобы получить приблизительно линейную кинетическую кривую (по крайней мере для коротких временных интервалов). Зачастую при этом возникает необходимость в„ использовании очень чувствительных методов определения содержания продукта. Вот почему в опытах такого рода весьма широко применяют радиоактивные субстраты. Заметим, что, когда кинетическая кривая не является прямой с самого начала и когда за меру скорости принимают количество соединения, ?прореагировавшего за определенный промежуток времени, можно получить неверные оценки. Иногда используют интегральную форму уравнения скорости, описывающую накопление продукта во времени. Существуют и другие приемы для сопоставления относительных скоростей, при» годные даже для кинетической кривой, приведенной на рис. 6-1. 1. Реакции первого порядка Для многих химических реакций скорость уменьшения концентрации данного реагента, [А], прямо пропорциональна концентрации этого реагента: ' v—Аж1=*>ш. <Ц Коэффициент пропорциональности к называется константой скорости. Кинетика первого порядка наблюдается для унимолекуляриых процео сов, в которых молекула А превращается в продукт Р, причем веррят^ «ость превращения А в Р за данный промежуток времени не зависит от, взаимодействия с другой молекулой. Характерным примером процесса такого рода является радиоактивный распад. Во многих случаях превращения фермент-субстратных комплексов представляют собой унимо-лекулярные процессы. Зачастую реакции первого порядка являются етсевдоунимолекулярными: вещество А реагирует со второй молекулой (например, с молекулой воды), однако второе вещество присутствует *в избытке, так что его концентрация не изменяется во время эксперимента и, следовательно, скорость реакции пропорциональна только величине [А]. Константа скорости первого порядка к имеет размерность с-1. Заметим, что когда [A]=l, v=k. Таким образом, константа скорости •первого порядка k численно равна скорости реакции (в М«с-1) при концентрации вещества, равной единице. Величина [А] в ходе реакции первого порядка уменьшается и в момент времени t задается одним из трех эквивалентных выражений, полученных интегрированием уравнения <6-2): [А]^[А]0Г^ ь.да-* (б-з) lg[A]0—Ig[Al=&/2,303. Уравнения (6-3) представляют собой уравнения экспоненциального распада — процесса, характерной особенностью которого является не* зависимость времени'№^ «. времени, за которое концентрация вещества А уменьшается вдвое), от концентрации pear гейта: . !п2 0,693 ,а Время релаксации т для вещества А определяется выражением *=х=-шг <6-5> и представляет собой время, за которое концентрация уменьшается* в е раз (~0,37) от исходной. 2. Число оборотов ферментов В том случае, когда фермент катализирует образование продукта с максимально возможной скоростью (Ушах), можно считать, что превращение промежуточного соединения ES в продукты описываете» уравнением ^r=Vm*,=k[ES]==k [E]t. (6-6> Здесь [EJf — это суммарная концентрация фермента, т. е. концентрация свободного фермента Е и фермент-субстратного комплекса ES. Уравнение (6-6) справедл |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|