химический каталог




Образование химических элементов в космических телах

Автор А.К.Лаврухина, Г.М.Колесов

214) со скоростью 19 200 км/сек в ядро кислорода. Эта первая ядерная реакция может быть изображена в следующем Еиде:

7NH + .Не4 -> 8017 + 1Н1 или сокращенно 7N14 (а, /?)801т,

где а — ядро атома гелия гНе4;

р (протон) — ядро атома водорода IH1.

Первым крупным открытием, связанным с осуществлением ядерных реакций, было открытие в 1932 г. нейтронов (оПх). Английский физик Д. Чэдвик, ученик Э. Резерфорда, обнаружил их при изучении следующей ядерной реакции:

4Ве94-2Не4->еС12 + 0^1.

Изучение свойств нейтрона показало, что он представляет собой частицу, которая не имеет электрического заряда. Масса его равна 1,00893; эта величина несколько больше массы ионизированного атома водорода, который с 1920 г. по предложению Резерфорда era л называться протоном. Его масса равна 1,008123.

Открытие нейтрона сыграло исключительно важную роль в науке. Оно привело прежде всего к созданию протонно-нейтронной модели атомного ядра, предложенной советским физиком Д. Д. Иваненко. Она существует и в настоящее время.

Согласно этой модели, ядра атомов состоят из протонов, число которых * (Z) равно порядковому номеру элемента в периодической системе Менделеева. Число нейтронов (N) равно разности Л — Z, где Д —массовое число изотопа, т. е. его атомный вес, округленный до

"целого числа. Ядро самого простого химического элемента— водорода состоит из одного протона (см. рис. 2), ядра атомов других элементов — из большего числа лротонов и нейтронов. Например, ядро 13AI27 (2 = 13 и А = 27) состоит из 13 протонов и 14 нейтронов. Обе со-, ставляющие части ядра называются сейчас нуклонами.

С этого времени стали считать, что атомы химических элементов состоят из трех элементарных частиц — протонов, нейтронов и электронов. С точки зрения про-тонно-нейтронной модели можно было объяснить и механизм протекания ядерных реакций. Первая ядерная реакция Резерфорда, согласно этой модели, схематически изображена на рис, 3.

Протонно-нейтронная модель послужила основой для дальнейшего детального изучения свойств атомных ядер. Оказалось, что ядро заключает в себе 99,98 о всей массы атома, хотя его диаметр в среднем в 100 тысяч раз меньше диаметра атома. В общей форме радиус ядра может быть вычислен из соотношения

R = 1,45-10~13-Л1'» см. (3)

Расчеты показывают, что диаметр самого тяжелого и большого ядра атома урана составляет примерно 1,8 ? 10~12 см, диаметр водорода равен 2,9 • 10~13 см, т. е. в семь раз меньше. Размеры всех других ядер атомов изменяются в этих пределах. Поскольку радиус ядра увеличивается с ростом А, можно сделать вывод, что протоны и нейтроны с одинаковой плотностью размещены во всех ядрах.

Однако исследования последних лет показали, что протоны и нейтроны располагаются в ядре не хаотично, а по определенным оболочкам, подобно тому как электроны в атоме находятся на строго определенных орбитах. Модели атомных ядер еще окончательно не построены, но имеется много данных о том, что в некоторых ядрах есть заполненные нейтронные и протонные оболочки, содержащие определенное число нуклонов, равное 2, 8, 20, 28, 50, 82 и 126. Эти числа получили название «магических». Ядра, содержащие в своем составе магическое число протонов или нейтронов, наиболее устойчивы. Об этом свидетельствуют, прежде всего, повышенные величины энергии связи нуклонов в таких ядрах.

Известно, что масса ядра всегда меньше арифметической суммы масс протонов и нейтронов, входящих в его состав. Это означает, что при образовании ядер происходит потеря в массе (А^), которая, согласно теории относительности, предложенной А. Эйнштейном в 1905 г., эквивалентна энергии (Е)

В = Атс2, (4)

где с — скорость света в вакууме, равная 3 * 1010 см/сек. Чем больше происходит потеря в весе, тем больше выделяется энергии, и поэтому образуется более прочное ядро. Таким образом, мерой устойчивости ядра и энер?pa uwo * y~ » шхэфэр

гии связи его нуклонов является величина Am, которая равна

Am = Zmp + (А — Z) тп — mz А , (5)

где trip —масса протона; т „ — масса нейтрона;

mz?a — масса ядра с массовым числом А и порядковым номером Z. На рис. 4 приведены кривые зависимости энергии

связи нуклонов в ядрах (EJA) и дефекта масс

от их массовых чисел и пересчете на один нуклон. Видно, что максимумы энергии связи и величин дефекта масс соответствуют изотопам элементов группы железа; кроме того, энергии связи высоки для ядер Не4 (2 протона .и 2 нейтрона), О16 (8 протонов и 8 нейтронов) и других. Следует отметить, что ядро гелия — одно из самых устойчивых ядер, особенно среди легких элементов. Расчеты показывают, что при образовании этих ядер из двух нейтронов и двух протонов должна выделяться колоссальная энергия. Так, при образовании 4 г гелия будет выделяться энергия, равная 646 млн. ккал. Повышение энергии связи наблюдается для ядер, которые содержат магическое число нейтронов или протонов. Как мы увидим дальше, эти изотопы имеют наибольшую распространенность на Земле и в метеоритах.

Атомные ядра благодаря своим малым размерам имеют необычайно высокую плотн

страница 6
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Скачать книгу "Образование химических элементов в космических телах" (1.5Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
прокат диапроекторов
Рекомендуем компанию Ренесанс - лестница в доме металлическая - всегда надежно, оперативно и качественно!
кресло руководителя nadir
Магазин KNSneva.ru предлагает жесткий диск цены - офис: Санкт Петербург, ул. Рузовская, д.11, - есть стоянка для клиентов.

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(10.12.2016)