химический каталог




Образование химических элементов в космических телах

Автор А.К.Лаврухина, Г.М.Колесов

верхности, ядерные процессы начинаются только в центре звезды. В настоя-цее время известно два механизма термоядерных реакций. Они получили название протон-протонного и углеродно-азотного циклов.

Протон-протонный цикл состоит из нескольких последовательных ядерных превращений. Они в зависимости от высоты потенциального барьера, вероятности туннельного эффекта, величины сечения протекают с различными скоростями, обычно характеризующимися средней продолжительностью, т. е. временем, в течение которого ядро А, столкнувшееся с ядром В, вступит с ним в ядерное взаимодействие. Основные характеристики отдельных реакций протон-протонного цикла приведены в табл. 10. К ним относятся величина энергии, выделяемой в каждой реакции, их сечение и продолжительность. Схематически ядерные реакции протон-протонного цикла изображены на рис. 32.

Вначале происходит слияние двух протонов, что приводит к образованию ядра дейтерия Н2 или иначе дейтрона D. Этот процесс сопровождается испусканием позитрона и нейтрино.

1. Н1 + Н1 Н2 + е+ + v.

Таблица 10

Реакции

Результаты измерений Результаты вычислений, Г= 13-10» град

освобожденная энер!ия, Шв сечение, барн сечение, барн продолжительность

В лабораторных условиях подобные процессы еще никогда не наблюдались, однако теоретически эта реакция поддается расчету, который показывает, что в условиях большинства звезд ее продолжительность составляет 14 млрд. лет и определяет время всего цикла. Сечение ее ничтожно мало.

Рис. 32. Схема ядерных превращений протон-протонного цикла.

Вторая стадия — это превращение образовавшегося дейтерия в ядро Не3 с выделением избытка энергии в Еиде гамма-кванта. Эта реакция протекает примерно за б сек:

2. Н2 + Н1 -> Не3 + т.

На третьей стадии происходит слияние ДЕух ядер Не3 с образованием ядра гелия Не4 и двух ядер водорода:

3. 2Не3 -> Не4 + 2Н1.

Это тоже довольно медленный процесс, его продолжительность составляет около миллиона лет. Однако он сопровождается выделением наибольшего количества энергии. По мере того как в звездах накапливаются ядра- гелия или в том случае, когда в веществе, из которого образовалась звезда, уже содержатся ядра гелия, возможны другие варианты в последней стадии протон-протонного цикла.

Вариант А

Не3 + Не*-?Be7+ т, Be7 + е~ Li7 + v, Н1 + Li7 -> 2Не4.

В варианте А ядро Не3 реагирует с ядром Не4 с образованием ядра Be7. Последний захватывает электрон с образованием Li7. В з^словиях земли происходит захват электрона с /(-оболочки с периодом полураспада, равным 52 дням. В зведных системах, где атомы ионизированы, захватываются, по-видимому, электроны плазмы. По вычислениям Г. Бете, период полураспада Be7 в условиях Солнца должен увеличиться до 14 месяцев. Цикл завершается реакцией взаимодействия ядра Li7 с протоном. Образующееся составное ядро распадается на два ядра гелия Не4. Именно на этой стадии и выделяется основная часть энергии всего цикла ядерных реакции.

В варианте В образующееся ядро Be7 соединяется с ядром водорода и превращается в неустойчивое ядро В8, которое путем позитронного распада переходит в Be8, последнее ядро очень неустойчиво и мгновенно распадается на два ядра гелия. В протон-протонном цикле образуется изотоп лития Li7, содержание которого составляет примерно 93% общего содержания лития в земной коре. Однако литий до сих пор не удалось обнаружить в атмосфере Солнца и других звезд. Это может указывать на то, что он полностью выгорает в протекающих термоядерных процессах.

В результате протекания реакции протон-протонного цикла в звездах выделяется огромная энергия, равная

6,2 Мэв, или 153 млн. больших калорий на 1 г водо-ода. Она в три миллиона раз больше, чем энергия, оторая выделяется при его сжигании по реакции Нг + Оа = 2Н20 и в 15 млн. раз больше, чем при жигании такого же количества высокосортного камен-ого угля, следовательно, термоядерная реакция син-еза ядер гелия из ядер водорода является самым ффективным источником энергии из всех источников, звестных человеку. Поэтому в последнее время весь-ia интенсивно ведутся работы по исследованию тер-юядерных реакций. Были изучены наиболее выгодные ; энергетическом отношении реакции синтеза ядер ге-гия, которые могут протекать за короткое время. Тайдено, что наиболее эффективной является реакция т"3 + Н2 = Не4 + оя1 + 17 Мэв. Она протекает за 1,2 X К10~6 сек. Дейтерий в природе встречается в больших соличествах; на каждые 6000 атомов водорода приходится 1 атом дейтерия, и его производство не представ-шет особых затруднений. Второй исходный продукт этой реакции — тритий, радиоактивный изотоп с периодом полураспада 12,1 года,—можно получить =при бомбардировке природного лития нейтронами в ядерном реакторе. Существуют и другие высокоэнергетические реакции с изотопами водорода, приводящие к синтезу гелия. Но вышеуказанная реакция между тритием и дейтерием отличается тем, что может протекать самопроизвольно за счет тепла, выделяющегося при синтезе ядер гелия. Однако для начала реакции требуется высокая

страница 32
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Скачать книгу "Образование химических элементов в космических телах" (1.5Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
beaba контейнер для варки круп pasta для babycook solo
пульт управления ft724-zz
кровать тахта с подъемным механизмом сбоку
asking alexandria екатеринбург 2017

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(27.03.2017)