химический каталог




Образование химических элементов в космических телах

Автор А.К.Лаврухина, Г.М.Колесов

ах указывает, видимо, на их происхождение из одного и того же космического вещества и на одинаковый характер ядерных реакций, приводящих к синтезу элементов Земли и метеоритов.

Изотопный состав атмосферы звезд изучен еще совершенно недостаточно. Однако имеются указания, что °н может быть различным. Впервые это показал советский ученый Г. А. Шайн для изотопов углерода — С12 и С13. Отношение их распространенности для атмосфер некоторых углеродных звезд меняется от 1 до 50. В настоящее время найдено, что для Земли, метеоритов и атмосферы Солнца отношение С13/С12 равно 0,011, а для атмосфер звезд класса N колеблется от 0,05 до 0,5, для атмосфер звезд класса R — от 0,02 до 0,3. Для межзвездного вещества оно равно 0,2. Эти различия имеют очень большое значение для решения вопроса о происхождении химических элементов, их синтезе в звездах и последующей эволюции в космическом пространстве и планетах.

Таблица 8

Изотопный состав железа

(содержание Fe56 принято за 100 °/о)

Массовое число Земная кора Метеориты

54 6,37 6,32

56 100 100

57 2,37 2,32

58 0,34 0,33

Распространенность изотопов подчиняется определенным закономерностям, главные из них следующие.

1. Наибольшей распространенностью обладают изотопы с четным числом протонов и нейтронов. На их долю приходится около 60% числа всех стабильных изотопов. Изотопы с нечетным числом протонов или нейтронов менее распространены — их сумма составляет около 36%. На долю изотопов с нечетным числом протонов и нейтронов приходится всего 4%.

2. Максимальной распространенностью обладают изотопы, атомный вес которых кратен четырем, например Не4, О16, Ne20, Mg24, Fe56 и другие. На долю таких изотопов приходится 86,81% веса земной коры.

3. В области элементов с Z<35 изотопы с большим избытком нейтронов менее распространены; в области

элементов с Z>35, наоборот, преобладают изотопы с большим избытком нейтронов. Этот факт указывает на различный характер процессов, приведших к образованию этих двух групп элементов.

Все существовавшие ранее гипотезы образования химических элементов исходили из средней космической

распространенности изотопов природных элементов, к рассмотрению которой мы сейчас и переходим. На рис. 29 показана зависимость средней распространенности изотопов химических элементов от их массового числа. Она проведена по данным, полученным на основании анализа химического состава 50 звезд, Солнца, Земли и метеоритов. Средняя распространенность легких элементов берется из данных спектрального анализа атмосфер звезд в предположении, что для огромного их большинства происходит непрерывное перемешивание вещества между оболочкой звезды и ее центральными областями. Для относительно тяжелых элементов взяты данные анализов каменных метеоритов, которые многими учеными принимаются в качестве образцов среднего состава первичного вещества всех тел Солнечной системы. Следует при этом иметь в виду некоторую неоднозначность приведенных величин. Она обусловлена прежде всего различной погрешностью методов, применяемых отдельными исследователями. Например, данные по распространенности многих элементов (титана, ванадия, калия и других) в метеоритах, полученные в последнее время с помощью активационного анализа, оказались в 50—100 раз меньшими по сравнению с прежними определениями, при которых использовались обычные химические методы. Следовательно, по мере усовершенствования методов анализа вещества различных космических тел будет^ безусловно, изменяться ход отдельных участков кривой средней космической распространенности химических элементов.

Из данных, которыми мы сейчас располагаем, видно, что самый распространенный элемент в космосе — водород, который составляет основную массу вещества звезд, космических лучей и некоторых планет. Второе место занимает гелий, которого в среднем в десять раз меньше, чем водорода. После гелия на кривой наблюдается резкий спад, соответствующий распространенности изотопов лития, бериллия и бора. Среднее суммарное содержание этих элементов в солнечной системе в 10s раз меньше, чем водорода, и в 300 раз меньше, чем кальция. После этого провала кривая средней распространенности поднимается вверх: распространенность изотопов углерода, азота, кислорода и других элементов только в 103—104 раз меньше распространенности водорода. Наибольшей распространенностью обладают изотопы С12, N14 и О16, затем распространенность изотопов медленно уменьшается до мере увеличения их массовых чисел вплоть до скандия, содержание которого очень мало и приближается к содержанию бериллия. После скандия кривая еще раз очень круто поднимается вверх и достигает максимума для железа и соседних с ним элементов.

В этой связи следует еще раз отметить, что изотопы железа и близких к нему элементов (см. рис. 4) характеризуются в отличие от всех остальных элементов сравнительно большой величиной энергии связи на один нуклон. Поэтому все они энергетически наиболее устойчивы. Одним из самых устойчивых изотопов является Fe56, наиболее распространенный изотоп в космиче

страница 26
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Скачать книгу "Образование химических элементов в космических телах" (1.5Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
электропривод клапана огнесдерживающего
стоимость мазка
чехол укрытие для садовых качелей
ремонт холодильников кунцево

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(25.06.2017)