химический каталог




Технология производства полупроводниковых приборов и интегральных микросхем

Автор А.И.Курносов, В.В.Юдин

кассеты в зависимости от используемого клеящего материала подвергают определенной термической обработке или выдерживают при комнатной температуре.

Особые группы составляют электропроводящие и оптические клеи, используемые для склеивания элементов и узлов гибридных и оптоэлектронных ИМС. Токопроводящие клеи представляют собой композиции на основе эпоксидных и кремнийорганических смол с добавлением порошков серебра или никеля. Среди них наиболее широкое распространение получили клеи АС-40В, ЭК.-А, ЭК.-Б, К-3, ЭВТ и К.Н-1, представляющие собой пастообразные жидкости с удельным электрическим сопротивлением 0,01— 0,001 Ом-см и диапазоном рабочих температур от —60 до +150°С. К оптическим клеям предъявляют дополнительные требования по значению коэффициентов преломления и светопропускания. Наиболее широкое распространение получили оптические клеи ОК-72 ?, ОП-429, ОП-430, ОП-ЗМ.

§ 14.3. Присоединение выводов

В современных полупроводниковых приборах и интегральных микросхемах, у которых размер контактных площадок составляет несколько десятков микрометров, процесс присоединения выводов является одним из самых трудоемких технологических операций.

В настоящее время для присоединения выводов к контактным площадкам интегральных схем используют три разновидности сварки: термокомпрессионную, электроконтактную и ультразвуковую.

Термокомпрессионная сварка позволяет присоединять электрические выводы толщиной несколько десятков микрометров к омическим контактам кристаллов диаметром не менее 20—50 мкм, причем электрический вывод можно присоединить непосредственно к поверхности полупроводника без промежуточного металлического покрытия следующим образом. Тонкую золотую или алюминиевую проволоку прикладывают к кристаллу и прижимают нагретым стержнем. После небольшой выдержки проволока оказывается плотно сцепленной с поверхностью кристалла. Сцепление происходит вследствие того, что даже при небольших удельных давлениях, действующих на кристалл полупроводника и не вызывающих его разрушения, локальное давление в микровыступах на поверхности может быть весьма большим. Это приводит к пластической деформации выступов, чему способствует подогрев до температуры ниже

306

эвтектической для данного металла и полупроводника, что не вызывает каких-либо изменений в структуре кристалла. Происходящая деформация (затекание) микровыступов и микровпадин обусловливает прочную адгезию и надежный контакт вследствие ван-дер-ваальсовых сил сцепления, а с повышением температуры между соединяемыми материалами более вероятна химическая связь.

Термокомпрессионная сварка имеет следующие преимущества: а) соединение деталей происходит без расплавления свариваемых материалов; б) удельное давление, прикладываемое к кристаллу, не приводит к механическим повреждениям полупроводникового материала; в) соединения получают без загрязнений, так как не используют припои и флюсы.

К недостаткам следует отнести малую производительность процесса.

Термокомпрессионную сварку можно осуществлять путем сое_-динений внахлест и встык. При сварке внахлест электрический проволочный вывод, как отмечалось, накладывают на контактную площадку кристалла полупроводника и прижимают к нему специальным инструментом до возникновения деформации вывода. Ось проволочного вывода при сварке располагают параллельно плоскости контактной площадки. При сварке встык проволочный вывод приваривают торцом к контактной площадке. Ось проволочного вывода в месте присоединения перпендикулярна плоскости контактной площадки.

Сварка внахлест обеспечивает прочное соединение кристалла полупроводника с проволочными выводами из золота, алюминия, серебра и других пластичных металлов, а сварка встык — только с выводами из золота. Толщина проволочных выводов может составлять 15—100 мкм.

Присоединять выводы можно как к чистым кристаллам полупроводника, так и к контактным площадкам, покрытым слоем напыленного золота или алюминия. При использовании чистых поверхностей кристалла увеличивается переходное сопротивление контакта и ухудшаются электрические параметры приборов.

Элементы, подлежащие термокомпрессионной сварке, проходят определенную технологическую обработку. Поверхность кристалла полупроводника, покрытую слоем золота или алюминия, обезжиривают.

Золотую проволоку отжигают при 300—600°С в течение 5— 20 мин в зависимости от способа соединения деталей. Алюминиевую проволоку протравливают в насыщенном растворе едкого натра при 80°С в течение 1—2 мин, промывают в дистиллированной воде и сушат.

Основными параметрами режима термокомпрессионной сварки являются удельное давление, температура нагрева и время сварки. Удельное давление выбирают в зависимости от допустимого напряжения сжатия кристалла полупроводника и допустимой деформации материала привариваемого вывода. Время сварки выбирают экспериментальным путем.

11*

307

Относительная деформация при термокомпрессионной сварке e = (l-0,8~)l00%,

где d— диаметр проволоки, мкм; Ь — ширина соединения, мкм.

Давление на инструмент определяют, исходя из распределения напряжений на стадии завершения деформации:

Р=д1±_1вт_(?>,

") 10 5 2,5 1,0 0,5 t,c ? ? Па

2,5 1 0,5 t,C

?,??? ?

300 325 350 375 Ш а) т°с

50 0

\ \ ч \

Г~1 \ \

300 325 350 375 Ш

5)

?'С

Рис. 14.2. Номограмма для выбора режимов термокомпрессионной сварки:

а — золотой проволоки с пленкой алюминия; б — алюминиевой проволоки с пленкой алюминия

где А — коэффициент, характеризующий изменение напряжений в процессе деформации проволоки; / — приведенный коэффициент трения, характеризующий трение между инструментом, проволокой и подложкой; ? — относительная деформация; ?? — предел текучести материала проволоки при температуре деформации; d — диаметр проволоки; D — диаметр прижимного инструмента, равный обычно (2-=-3) d.

На рис. 14.2 приведены номограммы режимов термокомпрессионной сварки золотой (а) и алюминиевой (б) проволоки с алюминиевыми контактными площадками. Эти номограммы дают возможность оптимального выбора соотношения между давлением, тепературой и временем.

Термокомпрессионная сварка имеет довольно много разновщг-ностей, которые можно классифицировать по способу нагрева, по способу присоединения, по форме инструмента. По способу нагрева различают термокомпрессионную сварку с раздельным нагревом иглы, кристалла или пуансона, а также с одновременным нагревом двух из этих элементов. По способу присоединения термокомпрессионная сварка может быть встык и внахлест. По форме инструмента различают «птичий клюв», «клин», «капилляр» и «иглу» (рис. 14.3).

При сварке инструментом «птичий клюв» одно и то же устройство подает проволоку, присоединяет ее к контактным площадкам интегральной схемы и автоматически обрывает, не выпуская ее из

308

«клюва». Инструмент в виде «клина» прижимает конец проволоки к подложке, при этом вдавливается не вся проволока, а только центральная ее часть. При сварке с помощью «капиллярного инструмента» проволока проходит через него. Капиллярный наконечник одновременно служит инструментом, передающим давление на проволоку. При сварке «иглой» конец проволочного вывода подводят в зону сварки специальным механизмом и накладывают на контактную площадку, а затем прижимают ее иглой с определенным усилием.

\ 11 I

а) *) Я . г)

Рис. 14.3. Типы инструментов для проведения термокомпрессионной сварки:

а — «птичий клюв»; б — «клин»; в — «капилляр»; г — «игла»

Для осуществления процесса термокомпрессионной сварки используются различные установки, основными узлами которых являются: рабочий столик с нагревательной колонкой или без нее, механизм создания давления на присоединяемый вывод, рабочий инструмент, механизм подачи и обрыва проволоки для выводов, механизм подачи кристаллов или деталей с присоединенным к ним кристаллом, механизм совмещения соединяемых элементов, оптическая система визуального наблюдения процесса сварки, блоки питания и управления. Все перечисленные узлы могут иметь различное конструктивное исполнение, однако -принцип их устройства и характер выполняемой работы одинаков.

Так, рабочий столик всех установок служит для закрепления кристалла или корпуса интегральной схемы в определенном положении. Обычно рабочий столик термокомпрессионных установок является сменным, что позволяет закреплять кристаллы различных размеров и геометрических форм. Нагревательная колонка служит для нагрева кристаллов или корпусов до требуемой температуры и позволяет регулировать ее в пределах 50—500°С с точностью регулировки + 5°С. Механизм создания давления предназначен для прижатия вывода к контактной площадке кристалла и обеспечивает регулирование усилия от 0,01 до 5 ? с точностью ±5°/о- Рабочий инструмент является одним из основных узлов термокомпрессионной установки. Его изготовляют из твердых сплавов типа ВК-6М, ВК-15 (для инструментов «птичий клюв» и «капилляр»)

309

или из синтетического корунда (для «клина» и «иглы»). Конструкция механизма подачи и отрыва проволоки зависит от типа установки и формы рабочего инструмента. Наиболее широко распространены два способа отрыва; рычажный и электромагнитный. Процесс отрыва проволочного вывода после изготовления термокомпрессионного соединения на кристалле интегральной схемы без нарушения его прочности во многом зависит от конструктивных особенностей механизма. Механизм подачи кристаллов или деталей к месту сварки представляет собой обыкновенные зажимы или сложные кассеты, смонтированные на рабочем столике установки. Наибольшая производительность достигается при использовании кассет с металлической лентой, на которой корпуса или кристаллы предварительно ориентируются в заданной плоскости и в определенном положении. Механизм совмещения обычно включает в себя манипуляторы, которые позволяют перемещать кристалл до его совмещения с соединяемыми элементами. _ Обычно используют манипуляторы двух видов: рычажные и пантографные. Оптическая система визуального наблюдения состоит из бинокулярного микроскопа или увеличительного экрана-проектора. В зависимости о

страница 74
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

Скачать книгу "Технология производства полупроводниковых приборов и интегральных микросхем" (3.82Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
шоу запашные лужники
http://taxiru.ru/fotootchet_forum_taksi/
аренда минивен на свадьбу на 20 человек
термобелье ставрополь

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(12.12.2017)