химический каталог




Составление химических уравнений

Автор А.А.Кудрявцев

иодической системе, т. е. в пределах периода неметаллические свойства усиливаются слева направо.

В реакциях окисления — восстановления отдача каким-либо атомом электрона, т. е. реакция окисления, рбязательно должна сопровождаться присоединением электрона к какому-либо другому атому, т. е. реакцией восстановления. Иначе говоря, реакция окисления — восстановления протекает только в том случае, когда суммарный энергетический эффект является положительным, т. е. если в результате перехода электрона от одного атома к другому получится выигрыш энергии.

Разумеется, положительно заряженные ионы обладают сродством к электрону. При присоединении электрона к положительно заряженному иону выделяется энергия в количестве, равном потенциалу ионизации с обратным знаком. Отрицательно заряженные ионы, теряя электроны, приобретают энергию, равную по величине сродству к электрону.

Отсюда можно сделать следующий вывод: реакция может произойти лишь в том случае, если сродство к электрону окислителя больше, чем потенциал ионизации восстановителя.

Для оценки способности элементов к присоединению и отдаче электронов в химии введено понятие электроотрицательности элемента (X), под которой понимают сумму потенциала ионизации атома (/) и его сродства к электрону (?), т. е. Х—1-\-Е.

Ниже приведены величины электроотрицательностей некоторых элементов, причем электроотрицательность лития принята равной единице:

Li — 1 Be - 1,5 B — 2 H -2,1

Na — 0,9 Mg -1,2 Al -1,5 с — 2,5

К — 0,8 Ca — 1 Sc -1,3 Si -1.8

Rb — 0,8 Sr - 1 Y -1,3 Ge -1,7

Cs -0,7 Ba — 0,9 Sn -1,7

Pb -1,6

N —3 О — 3,5 F — 4

Р — 2,1 S - 2,5 CI — 3

As -2 Se — 2,4 Br — 2,8

Sb — 1,8 Те- 2,1 I -2,4

Из приведенных данных видно, что относительная электроотрицательность в периоде растет с увеличением номера элемента, в группе, наоборот, — уменьшается.

Чем больше величина электроотрицательности элемента, тем сильнее его окислительные (неметаллические) свойства, и, наоборот, элемент, имеющий наименьшее значение электроотрицательности, наиболее активно проявляет восстановительные свойства.

Пользуясь значениями электроотрицательности элементов, легко определить направление перехода электронов в реакциях, наприме р

2е~

H2 + F2 = 2HF

2е~

2Na + H2 = 2NaH

6g2А1 + 3S = A12S3

В первой реакции электроотрицательность водорода 2,1, а фтора 4. Разница между этими величинами относительно велика (4 — 2,1 = = 1,9). Следовательно, при взаимодействии водорода с фтором переход электронов будет направлен от водорода к фтору, т. е. водород окисляется, а фтор восстанавливается.

Во второй реакции электроотрицательность натрия 0,9, а водорода 2,1; поэтому в данном случае водород выступает уже в роли окислителя, т. е. принимает электроны, а натрий, проявляя восстановительные свойства, — отдает их.

В третьей реакции электроны перемещаются от алюминия к сере, так как электроотрицательность алюминия меньше, чем серы.

Валентность и степень окисления. Валентностью элемента называется свойство (или способность) его атомов присоединять к себе (или замещать в молекулах сложных веществ) определенное число атомов другого элемента.

В соединениях с ионной связью валентность равна числу электронов, отданных или присоединенных атомом при превращении его в ион.

Валентность в ковалентных соединениях равна числу электронных пар, участвующих в образовании связи. Следовательно, валентность элемента определяется числом электронов, участвующих в образовании химических связей. Часто валентность элементов сравнивают с валентностью водорода, принятой за единицу. Например, в бромоводороде НВг бром одновалентен; в аммиаке NH3 азот трехвалентен; в метане СН4 углерод четырехвалентен. Нередко валентность элементов определяют и из их кислородных соединений. Например, в диоксиде кремния Si02 кремний четырехвалентен, в триоксиде хрома Сг03 хром шестивалентен, в тетраоксиде рутения Ru04 рутений восьмивалентен.

Валентность по водороду меняется от 1 до 4 (HF, SiH4), а по кислороду от 1 до 8 (Na20,* Os04). Между валентностью Я, атомным весом А и эквивалентом Э существует зависимость, выражаемая соотношением:

В

Э '

л

Валентность некоторых элементов — величина постоянная. Так, например, натрий во всех соединениях одновалентен, цинк — двухвалентен, лантан — трехвалентен и т. д. Для целого ряда элементов валентность изменяется в зависимости от условий протекания процесса. Например, олово может быть двух- и четырехвалентным, медь одно-, двух- и трехвалентной, сера двух-, четырех -и шестивалентной.

Нередко валентность для наглядности обозначают соответствующим числом черточек между символами элементов и пользуются структурными формулами. Число черточек равно числу единиц валентности. Атомы в молекуле связываются между собой так, что на определенное число единиц валентности одного элемента приходится такое же число единиц валентности другого элемента.

Приведем примеры структурных формул;

НС1

Н-С1

NH

н

з

сн4 н

Н—с—н

/\

i н

Эти формулы с то

страница 29
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

Скачать книгу "Составление химических уравнений" (2.39Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
дачное товарищество лесное озеро в подмосковье
кровать como 4
трезвый водитель
легенда-55! к юбилею виктора цоя билеты

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(25.05.2017)