химический каталог




Общая и неорганическая химия. Часть 3

Автор Ю.М.Коренев, В.П.Овчаренко

стадий может быть несколько, и поэтому экспериментально определенный порядок реакции может быть дробной величиной.

Реакция взаимодействия хлора с водородом формально является реакцией второго порядка. Хорошо известно, что эта реакция протекает при освещении по цепному механизму со взрывом.

Заполним сосуд смесью водорода с хлором и опустим его открытым горлом в эксикатор с водой. Гипотетически предположим, что эта реакция будет протекать с измеримой скоростью. Образующийся хлороводород мгновенно растворяется в воде. За счет этого вода начнет заполнять колбу, уменьшая объем непрореагировавшей смеси водорода и хлора. Так как в реакцию вступают два объема реагентов и образуются два объема хлороводорода, на которые уменьшается объем реакционной смеси, концентрации реагирующих веществ меняться не будут. Иными словами, реакция будет протекать с постоянной скоростью и не будет зависеть от концентраций реагирующих веществ. Такое возможно лишь в том случае, когда общий порядок реакции равен нулю.

Реакции, протекающие с постоянной скоростью, не зависящей от концентрации, являются реакциями нулевого порядка:

V=k-С° = к

III. Температура. С увеличением температуры увеличивается кинетическая энергия молекул, а следовательно, и скорость их движения. Увеличение скорости приводит к увеличению числа столкновений молекул и, как следствие этого, к увеличению скорости реакции. Экспериментально было установлено, что при увеличении температуры на каждые 10° скорость химической реакции возрастает в два-четыре раза:

Т2-Т\

где V\ — скорость реакции при температуре Ти V2 — скорость при температуре Т2. Коэффициент у называется температурным коэффициентом скорости реакции, и его значение для большинства неорганических веществ варьирует от двух до четырех. Эта закономерность носит название правила Вант-Гоффа.

При увеличении температуры скорость реакции увеличивается, и при этом концентрации реагирующих веществ не меняются. Следовательно, константа скорости будет изменяться с изменением температуры. Экспериментальное изучение зависимости скорости реакции от температуры позволило Аррениусу предложить уравнение, названное его именем:

\пк = -— + В Т

Из этого уравнения следует, что константа скорости реакции экспоненциально растет с увеличением температуры. Аррениус предположил, что константа А, фигурирующая в эмпирическом уравнении [66], равна отношению энергии активации к универсальной газовой постоянной, а константа В, ее чаще обозначают через 1пА:0, учитывает число эффективных (то есть приводящих к химической реакции) столкновений. С учетом этого уравнение [66] можно привести к виду:

Eg

k = kQ-e RT

Если построить график зависимости экспериментально найденных величин h\k от обратной температуры, то получим прямую линию (рис. 4). Отрезок, который отсекает эта прямая на оси ординат при 1 / Г —> 0, равен In ко, а тангенс угла (р наклона прямой

Из величины тангенса угла наклона прямой можно определить энергию активации.

О

1 /Т

Рис. 4. Зависимость логарифма константы скорости химической реакции

от обратной температуры. Найти энергию активации можно, измерив скорость реакции при двух разных температурах. Отношение скоростей реакций равно отношению констант скоростей или разности их логарифмов, что позволяет исключить 1п?о:

ТО

RT2-TX

AT

Безусловно, скорость химической реакции зависит от числа столкновений молекул реагирующих веществ. Но не всякое столкновение приводит к протеканию реакции. Образование продуктов реакции происходит лишь при столкновении «активных» молекул, т.е. молекул, обладающих энергией выше определенного энергетического барьера. При любой заданной температуре молекулы обладают различными энергиями. Существует распределение молекул по энергиям. Зависимость числа молекул от самой энергии приведена на рис. 5.

На рис.5 приведены две кривые распределения молекул по энергиям при разных температурах, причем Т2>ТУ. Из рисунка видно, что средняя кинетическая энергия увеличивается, а число молекул, обладающих средней кинетической энергией, уменьшается. Это происходит из-за того, что площадь под кривой, соответствующая общему числу молекул, не меняется, так как число молекул остается постоянным. Пусть Еа — энергия, соответствующая энергетическому барьеру начала реакции. Тогда площадь, заштрихованная под кривой, будет определять число молекул, способных вступить в реакцию, т.е. «активных» молекул. Энергия, соответствующая Еа, называется энергией активации. С увеличением температуры увеличивается площадь, соответствующая количеству молекул, обладающих энергией больше энергии активации реакции, что и определяет увеличение скорости реакции. Данное утверждение справедливо для предположения, что энергия активации не зависит от температуры. В общем случае это не так, но это допущение корректно для ограничения интервала температур.

Физический смысл энергии активации легко понять из рис. 6, если по оси ординат отложить изменение энтальпии, а по оси абсцисс - направление хода реакции.

исх. в—ва

пр

страница 13
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Скачать книгу "Общая и неорганическая химия. Часть 3" (164Kb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
на лечение ребенка нужны средства
Межкомнатная дверь Краснодеревщик 6340
bialetti кастрюли
кзц миллениум ярославль официальный сайт билеты

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(24.06.2017)