химический каталог




Общая и неорганическая химия. Часть 1

Автор Ю.М.Коренев, В.П.Овчаренко

1924 г. французский физик деБройль исходя из представления о двойственной природе микромира, предположил, что электрон имеет определенную длину волны, которая укладывается на орбите целое число раз. Это означает, что 2кг = пк.

Предположение деБройля в 1927 году получило экспериментальное подтверждение. Американские физики Девисон и Джермер наблюдали дифракцию электронов на кристаллах хлорида натрия.

В теорию Бора принцип квантования был введен произвольно. В ней в основном использовались законы классической механики. Открытие волновых свойств электрона, фотоэффект, опыты с абсолютно черным телом привели к созданию нового раздела физики— квантовой механики. Большую роль в ее создании сыграли Э. Шредингер и В. Гейзенберг.

Квантовомеханическая модель атома не такая наглядная, как модель, предложенная Бором, а математический аппарат квантовой механики несравненно сложнее. Поэтому основные положения квантовомеханической модели строения атома будут рассмотрены чисто качественно, без использования математического аппарата. Многое из того, что будет изложено в следующем разделе, читателю придется принять «на веру», без доказательств. Квантовые числа будут просто введены для описания поведения электрона в атоме, в то время как они являются следствием решения уравнения Шредингера.

2.2. Квантовомеханическая модель строения атома

Гейзенберг указал на принципиальные различия в наблюдении за микро- и макрообъектами. Наблюдение за любым объектом, в принципе, сводится к двум случаям:

1) Объект сам подает какие-либо сигналы. Например, шум от работающего двигателя, тепловое излучение и т. п.

2) На наблюдаемый объект оказывается какое-то воздействие, например, облучение светом, радиоволнами и т.п., и регистрируется отраженный сигнал (как это широко используется в радиолокации, в эхолокации). Причем, чем сильнее воздействие на наблюдаемый объект, тем сильнее (при прочих равных условиях) отраженный сигнал и надежнее регистрация объекта.

Если ведется наблюдение за привычными для нас макрообъектами, то действие на них электромагнитного излучения (свет, радиоволны и т. д.) не изменяют ни их положения, ни их скорости. Совершенно иначе обстоит дело при наблюдении объектов микромира, например, электронов. При действии кванта света на электрон скорость последнего не остается без изменения. Поэтому, определив при действии фотона положение электрона в какой-то момент времени, мы не в состоянии в это же мгновение определить его скорость — она уже изменилась.

Гейзенберг предложил соотношение, которое получило название «соотношение неопределенностей»:

АрАх> —, (14)

2%

где Ар— неопределенность в значении импульса частицы, а Ах— неопределенность в ее координатах. Из этого соотношения следует, что чем точнее определены координаты электрона, тем с меньшей точностью будет определен его импульс и наоборот. Иными словами, говорить о траектории электрона не имеет смысла, так как для описания последней необходимо точно знать и координаты электрона и его импульс в каждый момент времени (что было заложено в модель атома Бора). Соотношение неопределенностей показывает, что столь точное описание движения такой маленькой частицы, как электрон, невозможно, т. е. само понятие орбита (траектория) электрона оказывается несостоятельным. Необходим совершенно иной метод описания поведения электрона в атоме, который дает квантовая механика. В квантовой механике для описания поведения электрона исходными являются два положения:

1) движение электрона носит волновой характер;

2) наши знания о поведении электрона имеют вероятностный (или

статистический) характер.

Некоторые разъяснения по первому положению были уже даны (на стр. 25). Прокомментируем второе положение. В соответствии с принципом неопределенности Гейзенберга никогда нельзя точно установить место нахождения частицы. Лучшее, что можно сделать в этом случае, это указать вероятность, с которой частица будет находиться в области пространства AV- Ах- Ау ? Az.

В 1926 г. Шредингер предложил уравнение, в которое для описания поведения электрона в атоме была введена волновая функция. Уравнение имеет обманчиво простой вид:

&Ч* = ЕЧ>, (15)

где Е— полная энергия частицы, Ч*— волновая функция, Й — оператор Гамильтона. Гамильтониан показывает, какие математические операции нужно произвести с волновой функцией, чтобы решить уравнение относительно энергии. Физический смысл волновой функции определить трудно, а вот квадрат модуля ее | Ч* |2 определяет вероятность нахождения электрона в данной области пространства.

Уравнение Шредингера точно решается для водорода и водородоподобных атомов (т.е. для систем, состоящих из ядра и одного электрона). Из решения этого уравнения для атома водорода вытекало, что поведение электрона в атоме описывается четырьмя квантовыми числами.

1°. Главное квантовое число п. Оно может принимать значения от 1 до бесконечности, которые определяют:

а) номер энергетического уровня (в теории Бора - номер орбиты);

б) интервал энергий электронов, находящих

страница 10
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Скачать книгу "Общая и неорганическая химия. Часть 1" (307Kb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
где учиться на кондиционерщика
продажа земельных участков с газом и электричеством
Howard Miller Chiming 625-471
заказать микроавтобус в москве цены

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(08.12.2016)