химический каталог




Активные угли и их промышленное применение

Автор X.Кинле, Э.Бадер

лена [22]:

Диаметр зерен, мм 1,5 2,5 4,0 Длина зоны массопередачи, см, при скорости потока воздуха

10 см/с — — 8

20 см/с 2,5 6,0 13

30 см/с 5,0 7,5 16

Наряду с экспериментальным определением длину адсорбционной зоны Lmoz можно рассчитать по формуле Михаэльса [23, 24]: в этом случае необходимо экспериментально определить только время до проскока и насыщения; кроме этого, следует определить степень отработки угля в адсорбционной зоне.

*-Кй2-{*.-*о)Н1\.Р{*.-'о) + 'о] (3'23)

где ts — время до насыщения; tD — время до первого проскока; Н — высота слоя угля; F — степень использования адсорбента в зоне массопередачи, которую можно рассчитать по форме выходной кривой (в большинстве случаев F « 0,5).

Во всех экспериментах с короткими слоями активного угля обычно можно наблюдать явление мгновенного проскока в лобовом слое (так называемой мертвой зоне). По всей длине шихты за лобовым слоем концентрация медленно возрастает от нулевой до Со, тогда как лобовой слой мгновенно насыщается до максимальной концентрации С0. В результате имеет место заполнение крупных пор до того, как станет возможным использование объема микропор.

Модель длины неиспользованного слоя особенно подходит для расчетов газоадсорбционных процессов, поскольку она не зависит от размеров адсорберов; это обстоятельство позволяет легко перенести результаты лабораторных испытаний на промышленные аппараты. Этот метод можно использовать также и для жидкофазных процессов, несмотря на трудности, связанные с вытеснительным режимом процессов [25].

4. ПОЛУЧЕНИЕ АКТИВНЫХ УГЛЕЙ 4.1. ОБЩИЕ СВЕДЕНИЯ

Активные угли получают из разнообразного углеродсодер-жащего сырья в некарбонизованном виде или в форме углей и коксов. Основной принцип активирования состоит в том, что

34

утлеродсодержащий материал подвергается селективной термической цобработке в соответствующих условиях, в результате которой образуются многочисленные поры, щели и трещины и увеличивается площадь поверхности пор на единицу массы. В технике используются химические и парогазовые способы активирования.

При химическом активировании в качестве исходного сырья используются в основном некарбонизованные продукты (например, древесные опилки, торф), смесь которых с неорганическими активирующими агентами подвергается высокотемпературной обработке. К активирующим агентам относятся в первую очередь обезвоживающие вещества: хлорид цинка и фосфорная кислота.

Исходным сырьем для парогазового активирования служат обычно карбонизованные природные материалы: древесный уголь, торфяной кокс, уголь из скорлупы кокосового ореха, материалы типа каменного угля или кокса из бурого угля. Важнейшим фактором, определяющим способность этих продуктов к активированию, является доля летучих компонентов. Если она очень мала, то активирование трудноосуществимо или вообще невозможно. Примером этого служит графит. С увеличением содержания летучих можно в первом приближении говорить о пропорциональном повышении реактивности. Однако, если реактивность слишком велика, например, во вспучивающихся и спекающихся каменных углях, то возможно снижение степени активирования. Реактивность исходного материала в значительной степени связана с присутствием ма-кропор.

Для активирования газами обычно используется кислород (воздух), водяной пар и диоксид углерода. Активирование воздухом имеет избирательный характер, однако существует опасность внешнего обгара гранул. Поэтому предпочтение отдается водяному пару и диоксиду углерода.

Для достаточно высокой с технической точки зрения скорости реакции при использовании этих газов необходимы температуры 800—1000 °С. Поэтому для ведения процесса необходимо специальное оборудование: шахтные, вращающиеся, многополочные печи, реакторы с движущимися слоями и различные другие аппараты. Выбор подходящего оборудования зависит от степени дробления исходного материала и от того, в какой форме должны быть получены угли — порошкообразные, зерненые или формованные. Универсальными являются вращающиеся печи, поэтому они применяются особенно часто.

При активировании углеродсодержащего материала происходит значительное уменьшение массы твердого вещества. " оптимальных условиях это эквивалентно увеличению пористости. Отсюда в первом приближении можно простым весовым способом оценить увеличение активности угля. Удобным

2*

85

методом в этом случае является определение насыпной плотности.

Важными факторами, позволяющими сделать правильный выбор активных углей для определенных целей, являются гранулометрический состав, площадь внутренней поверхности (объема пор), распределение пор по размерам, природа и содержание примесей. По внешнему виду различают порошковые угли, которые используются преимущественно для обесцвечивания, и зерненые угли с неправильной формой зерен, а также формованные угли, которые в большинстве случаев состоят из цилиндрических гранул.

Важное значение для активности угля имеют микропоры; диаметры этих пор (до 2 нм) соизмеримы с размерами адсорбирующихся молекул. Микропоры обеспечивают развитие основной части внутренней поверхности активного угля. Кроме них в угле присутствуют переходные (мезо-) поры с диаметрами 2—50 нм и более крупные макропоры.

При получении активных углей свойства их можно регулировать выбором соответствующего сырья, метода активирования, изменением продолжительности и условий активирования; при этом на определенные свойства может влиять целый ряд условий. Так, число и распределение размеров пор зависят, в частности, от природы сырья, вида и условий процесса активирования. В процессе химического активирования некарбонизо-ванного исходного материала получают уголь с высокой активностью и относительно широкими микропорами, однако он загрязнен неорганическими добавками, используемыми в процессе изготовления. Если тот же исходный материал, например древесину, вначале подвергнуть пиролизу, а затем активировать водяным паром, можно получить продукт, содержащий в основном тонкие поры и не имеющий посторонних примесей.

4.2. СЫРЬЕ ДЛЯ ПОЛУЧЕНИЯ АКТИВНЫХ УГЛЕЙ

Важнейшим сырьем, используемым в Европе для получения активного угля, являются: древесина (в виде опилок), древесный уголь, торф, торфяной кокс, некоторые каменные и бурые угли, .а также полукокс бурых углей. При получении углей для противогазов и других углей специального назначения, которые должны обладать высокими прочностными свойствами и большим объемом тонких пор, используется скорлупа кокосового ореха. В США широко используются лигнитовые угли, а также нефтехимические продукты. Кроме того, в литературе приводятся сведения о возможном использовании большого числа других углеродсодержащих природных и синтетических материалов. Здесь следует назвать скорлупу различных видов орехов, фруктовые косточки, асфальт, карбиды металлов, сажу, углеродсодержащие отходы разного рода — мусор, осадки сточных вод, летучую золу, изношенные резиновые покрышки, от-

36

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,3

о-.с

Рис. 4.1. Классификация твердых горючих материалов:

/ — антрациты; 2 — каменные угли; 3 — лигнитовые каменные углн; 4 — бурые угли; 5 — лигнитовые бурые углн; 6 — торф; 7 — древесина; 8 — целлюлоза: 9 — лигннн.

ходы производства поливинил-хлорида и других синтетических полимеров (например, феноль-ных смол). В промышленном производстве активного угля эти материалы пока не нашли применения.

Наглядное представление о природных горючих материалах как важнейшем источнике сырья для получения активного угля дает изображение химического состава этих материалов в системе координат, где ордината соответствует отношению водород : углерод, а абсцисса — отношению кислород : углерод [1]. Начало координат соответствует чистому углероду (рис. 4.1). В направлении к этой точке способность к активированию снижается; в противоположном направлении от начала координат появляется необходимость в коксовании исходного материала или ином способе уменьшения высокого содержания летучих перед активированием (например, у вспучивающихся и спекающихся углей).

Ни

страница 9
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Скачать книгу "Активные угли и их промышленное применение" (2.76Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
2RS40EA
grundfos nb 40-160/158 a-f-a-baqe 5,5kw
финансовая помошь детям
ремонт системы vrf

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(24.11.2017)