химический каталог




Катализ в химии и энзимологии

Автор В.Дженкс

сть реакции двух молекул А и В с образованием продукта Р в растворе (схема 1) пропорциональна числу взаимных соударений двух молекул и, следовательно, пропорциональна концентрации каждого реагента:

А + В ->- Р. (1)

Эта закономерность описывается уравнением (2), в котором константа скорости реакции второго порядка является коэффициентом пропорциональности перед произведением концентраций двух реагирующих молекул:

-Р-ь = ,= -^=-^- = -^ = МАПВ]. (2)

Если концентрации реагентов выражаются в молярной шкале, размерность этой константы скорости будет л/моль-время. Скорость реакции первого порядка [схема (3)[

А —*¦ Р (3)

пропорциональна концентрации одного вещества и описывается константой скорости ракции первого порядка, которая имеет размерность обратного времени с-1 или мин-1 [уравнение (4)]:

и=к[А]. (4)

Таким образом, порядок реакции описывает число молекул, которым пропорциональна скорость реакции; однако он не обязательно указывает на число молекул, вовлекаемых в реакцию, поскольку некоторые молекулы могут реагировать, не влияя на наблюдаемую скорость реакции [схема (5), уравнение (6)]. В таких случаях говорят, что реакция является реакцией нулевого порядка относительно такого реагента

А--*¦ А* —--»- Р, (5)

медленно быстро

и=к[А]. (6)

1. РЕАКЦИИ ПЕРВОГО ПОРЯДКА

Уравнение (4) для реакции первого порядка можно проинтегрировать от t0 до экспериментально определяемого времени в соответствии с уравнениями (7) — (10), в которых А0 — концентрация компонента А в нулевое время:

t

j dt, (7)

d[AL__k

J [A]

Ао (o

— ln[A] + lnA0=«, (8)

ЬтаТ=«, (9)

[A]=Aoe-ftt. (10)

Переменными в этих уравнениях являются [А] и г, так что концентрация А экспоненциально уменьшается во времени и зависимость log [А] от t линейна с тангенсом угла наклона, равным— к/2,303 (рис. 1). Время полупревращения реакции есть время, в течение которого концентрация А уменьшается наполовину по сравнению с начальным значением. Подстановка 0,5 А0 в уравнение (9) приводит к уравнению (11), которое показывает, что время

ПРАКТИЧЕСКАЯ КИНЕТИКА

419

полупревращения в реакции первого порядка непосредственно связано с кон-

А0

In

= M1/2 = ln2 = 0,693,

(И)

0,5А0

стантой скорости первого порядка; это соотношение представлено уравнением

, 0,693

1/2

(12)

1

На практике удобно откладывать [А] или некоторую экспериментально определяемую величину, прямо пропорциональную [А], в полулогарифмических координатах как функцию времени. Время полупревращения можно непосредственно определить из этой зависимости как время, в течение которого концентрация А уменьшится наполовину по сравнению со своим начальным значением. Затем по уравнению (12) можно определить константу скорости первого порядка. Поскольку время полупревращения реакции не зависит от концентрации А, оно может быть определено из любой части этой прямой, и, чтобы избежать ошибок, важно проверить время полупревращения по крайней мере еще для одного дополнительного периода реакции (рис. 1).

Одним из величайших практических удобств реакций первого порядка является то, что их кинетическое поведение не зависит от концентрации реагирующих веществ, так что константа скорости может быть получена из времени полупревращения для наблюдаемого исчезновения реагирующих веществ или появления продуктов реакции без знания их абсолютной концентрации. Таким образом, вместо построения зависимости log [А] от времени можно использовать результаты любого другого экспериментального измерения, которое пропорционально концентрации например, кривые изменения

0,5 1,0 Время, мин

Рис. 1. Зависимость (полулогарифмические координаты) изменений в поглощении при 270 нм, вызываемых выделением фенола и фенолят-иона в реакции 5-Ю-4 моль/л фенилаце-тата с 0,6 моль/л буферным раствором этиламина, содержащим 40% свободного основания при ионной силе 1,0 моль/л раствора хлорида калия и 5 °С. Реакция подчиняется кинетике (псевдо)первого порядка с временем полупревращения, которое не зависит от глубины реакции.

А (или Р). Это очевидно, если, оптической плотности вещества А или продукта Р, который образуется из А, изучены в отсутствие перекрывающего поглощения другой частицы (рис. 2, а и 2, б). Это менее очевидно, если

А,

Рис. 2. Зависимость поглощения реагента Аа или продукта Ар от времени для реакции первого порядка в случае, если только продукт или только реагент поглощают на длине волны, выбранной для экспериментального измерения.

27*

420

глава 11

измерения проводят на длинах волн, на которых меняется поглощение как А, так и Р (рис. 3), тем не менее это справедливо и в данном случае. То, что время полупревращения, измеренное по изменению оптической плотности 0,5 АА, является одинаковым как для исчезновения А, так и для появления Р, видно из того факта, что наблюдаемая оптическая плотность при времени

протекания реакции, равном времени полупревращения, равна поглощению половины начальной концентрации А (0,5 А0) плюс поглощение половины конечной концентрации Р (0,5 Рею), как показано уравнением

0,5Д Atot = А0еА—0,5Аое а + °>5Р °°бр =

= 0,5А0еА+0,5РоовР, (13)

в котором 8а и ер— молярные коэффициенты экстинкции А и Р соответственно. Таким образом, протекание реакции первого порядка можно исследовать при измерении полупериодов изменений в видимом, ультрафиолетовом, инфракрасном, ядерном магнитном резонансном поглощении, так же как при изменении полупериодов изменений объема, электропроводности, выделения тепла, оптического вращения, показателя преломления, концентрации ионов водорода, поскольку полупериоды изменений этих величин являются теми же, что и для изменений концентраций А и Р. Конечно, это будет справедливо лишь в том случае, если измеряемые величины линейно связаны с концентрациями А, Р или А и Р.

Практически, если поглощение (или другая измеряемая величина) возрастает в течение эксперимента, в полулогарифмических координатах откладывают величину А<х, — At от времени протекания реакции. Если поглощение уменьшается, откладывают величину At — Аоо. Важно быть уверенным, что в течение эксперимента на изменение поглощения не влияют другие факторы, за исключением изменения концентраций реагирующих веществ.

2. ЗАВЕРШЕНИЕ РЕАКЦИИ

Наиболее важной экспериментальной величиной, которая требуется для определения констант скоростей первого порядка, является предельное значение поглощения или другого исследуемого параметра Аоо, которое соответствует концу реакции, поскольку каждое экспериментальное значение At должно вычитаться из этого значения, или наоборот. Наиболее часто причиной, вызывающей отклонение от кинетики первого порядка в реакциях, для которых ожидается первый порядок, является ошибка в определении конечных значений. Экспериментальные значения, соответствующие концу реакций, обнаруживают значительно меньшие абсолютные изменения, чем в начальные моменты, и особенно чувствительны к ошибкам и отклонениям, вызываемым неправильным определением конечной точки и предельного значения. Случайные экспериментальные ошибки обычно приводят к разбросу точек, в то время как неправильное определение предельного значения (систематическая ошибка) ведет к искривлению прямой линии вблизи окончания реакции.

Предельные значения обычно определяют после протекания отрезка времени, соответствующего 10 периодам полупревращения, когда реакция

время

Рис. 3. Наблюдаемое изменение в поглощении и изменения в поглощении исходного соединения и продукта реакции, в случае если оба соединения поглощают на выбранной длине волны. Время полупревращения для всех изменений поглощения одинаково.

ПРАКТИЧЕСКАЯ КИНЕТИКА

421

Число периодов полупревращения

4 5 6 7

Доля непревращен-

ного вещества, %

6,25 3,1 1,5 0,8

протекает до завершения на 99,9%. В некоторых случаях определение времени полупревращения и предельного значения можно провести при семи временах полупревращения; в этом случае реакция достигает глубины 99,2% и необходимо сделать поправку на 0,8% к найденному значению. Иногда необходимо установить предельное значение из наблюдений при более ранних временах путем внесения соответствующей поправки. Однако в этом случае важно быть уверенным, что реакция протекает по первому порядку. Доля непревращенного вещества, остающегося после времени реакции, которое соответствует различному числу периодов полупревращения, приведена справа:

Ошибки в определении предельного значения часто возникают вследствие вторичных процессов, например окисления продуктов реакции, которые вызывают изменения поглощения или другого исследуемого параметра. Иногда полезно найти предельное значение, используя реакционную смесь, в которой протекает реакция того же количества субстрата, но протекает

достаточно быстро, чтобы можно было пренебречь вторичными процессами. Это можно сделать добавлением большой концентрации второго реагента, при введении поправки на поглощение этого реагента или определением предельного значения в модельной реакционной смеси. Так, предельное значение поглощения для медленной реакции фенилового эфира с амином (которую спектрофотометрически исследуют по выделению фенола) можно получить, подвергая известное количество достаточно концентрированного раствора фенилацетата щелочному гидролизу, нейтрализуя его и затем добавляя к модельной реакционной смеси, содержащей амин, с получением той же конечной концентрации фенола, как и в кинетическом эксперименте.

Альтернативный метод получения константы скорости первого порядка, применяемый в том случае, если трудно найти предельное значение, был описан Гугенгеймом [2]. Если значение хх измеряемого параметра в конце реакции не известно, можно взять значение параметра при серии времен t и при серии времен, отстоящих на постоянную величину f -f А (рис. 4). Чтобы получить более точное значение константы, измерения нужно проводить в области времени полупревращения реакции. Значение параметра при каждом времени Xt для реакции первого порядка выражается уравнением (14), значение при времени t + А — аналогичным уравнением (15)

(14)

время, с 6

Рис. 4. Приложение метода Гугенгейма для реакции катиона 1-ацетокси-4-метокси-пиридиния с этилендиамином(5 -Ю^моль/л) в 0,01 моль/л боратного буфера при рН 8,36, ионной силе 1,0 моль/л и 25 °С. Исследование проводили спектрофотометрически при 280 нм.

а — наблюдаемое изменение поглощения от времени; б — полулогарифмическая прямая изменения поглощения через интервал в 5 с.

с) е~

= (*0-*«»)«~ft('fA).

Вычитание этих уравнений приводит к уравнению

е-йД),

(15)

(16)

422

ГЛАВА 11

логарифмическая форма которого дана уравнением

ln(xt-xA) = _W + ln[(x0-Zoo)(l-e-ftA)]. (17)

Последний член уравнения (17), который содержит неизвестную величину Жоо, является постоянным и не используется при определении константы скорости реакции. Константу скорости определяют обычным способом из графика log (xt — #д) или log (#д — Xt) от времени (рис. 4). Опасность этого метода заключается в том, что он может приводить к линейным зависимостям для реакций, которые не подчиняются строго кинетике первого порядка. Прежде чем использовать этот метод, необходимо убедиться, что реакция подчиняется кинетике первого порядка и что вторичные процессы не влияют на значение параметра при t -f- А.

Достаточным свидетельством в пользу того, что реакция строго описывается кинетическими уравнениями первого порядка, является демонстрация справедливости уравнения при временах реакции до трех-четырех периодов полупревращения. Точные значения констант скоростей можно получать при исследовании реакции в течение двух периодов полупревращения, если достаточно точно определено предельное значение. В некоторых случаях достаточную точность определения константы скорости можно получить и при изучении реакции в течение одного периода полупревращения, если точно установлено, что реакция подчиняется кинетике первого порядка. Однако отклонения от кинетики первого порядка вследствие неправильного определения предельного значения или по каким-либо другим причинам могут не проявиться при исследовании реакции в течение одного или даже двух периодов полупревращения, так что, если не установлено, что реакция строго подчиняется кинетике первого порядка, значения констант скоростей могут получиться с большой ошибкой.

3. реакции второго порядка

Для реакции второго порядка [схема (1)], которая подчиняется уравнению скорости (2), интегрирование последнего приводит к

1 -ь^й;15=и, as)

В0 —А0 В0(А0 — х)

в котором А0 и В о — начальные концентрации веществ А и В, а; — убыль концентраций А и В, и равно концентрации образовавшегося продукта. Константу скорости реакции к можно определить из зависимости In [(В0 — — ж)/(А0 — х)\ от времени.

В специальном случае, когда концентрации А и В в нулевое время равны (А0 = В0), уравнение для скорости реакции и его интеграл имеют вид уравнений (19) и (20), в которых С соответствует остающимся концентрациям А или В. Константу скорости к можно получить из зависимости 1/С от времени

= (19)

-ег-ЕГ" (20)

В случае если концентрация А много больше, чем концентрация В, концентрация А заметно не меняется в течение реакции, и ее можно считать постоянной. Уравнение скорости для этого случая дается уравнением

v--=k[A](B0-x)=kobs(B0—x), (21)

в котором константа скорости первого порядка равна к [А]. О такой реакции говорят, что она является реакцией псевдопервого порядка, поскольку каж-

ПРАКТИЧЕСКАЯ КИНЕТИКА

423

дая экспериментальная кривая подчиняется уравнению первого порядка, однако наблюдаемая константа скорости к0ь3 не является действительной константой, а представляет собой функцию от концентрации второго реагента А. Константу скорости второго порядка определяют из наклона зависимости А;0ь3. измеренной при различных концентрациях А, от [А]. Константы скорости псевдопервого порядка дают удобный метод кинетического изучения механизма реакции, однако большая опасность использования таких констант заключается в их чувствительности к примесям, которые могут присутствовать в низких концентрациях в реагенте А, находящемся в большом избытке. Если такие загрязнения много более реакционноспособны, чем А, наблюдаемая реакция псевдопервого порядка может отражать реакцию с примесями, а не с А. Так, пиперидин получают восстановлением пиридина, и остающаяся при перегонке примесь 0,1% пиридина является ответственной за большинство наблюдаемых реакций раствора перегнанного пиперидина с активными ацилирующими агентами при рН 6 [3]. Это загрязнение, а также другие загрязнения аминов, такие, как метилзамещенные пиридины, можно удалить многократной перекристаллизацией гидрохлорида амина.

4. НАЧАЛЬНЫЕ СКОРОСТИ

Измерение начальных скоростей реакции является особенно полезным для получения констант скоростей медленных реакций. Упрощающее приближение этого метода заключается в том, что, если реакция протекает только на 1—2%, концентрации всех реагирующих веществ остаются в период измерения постоянными, так что константу скорости можно определить при известных концентрациях реагирующих веществ непосредственно из скорос

страница 77
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

Скачать книгу "Катализ в химии и энзимологии" (4.04Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
самообучающий курс обучения по ремонту холодильников
объемные светвые буквы
полировка кузова и нанесение керамики
апельсины с наклейками фото

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(23.11.2017)