химический каталог




Нанокристаллические материалы: методы получения и свойства

Автор А.И.Гусев

опи24

сан плазмохимический синтез наночастиц оксида алюминия со средним размером 10—30 нм. Из результатов этой работы следует, что образование нанопорошков оксида алюминия с минимальным размером частиц достигается при взаимодействии паров металла с кислородом воздуха в условиях интенсивного вдувания воздуха, за счет чего происходит быстрое снижение температуры. Интенсивное охлаждение не только тормозит рост частиц, но и увеличивает скорость образования зародышей конденсированной фазы. Плазмохимический синтез с окислением частиц алюминия в потоке кислородсодержащей плазмы приводит к образованию более крупных частиц оксида по сравнению с окислением предварительно полученного пара металла.

К плазмохимическому синтезу достаточно близко примыкает газофазный синтез с использованием лазерного нагрева реагирующей газовой смеси [57—61]. Лазерный нагрев обеспечивает контролируемое гомогенное зародышеобразование и исключает возможность загрязнения. Размер нанокристаллических частиц уменьшается с ростом интенсивности (мощности, отнесенной к единице площади) лазерного излучения благодаря повышению температуры и скорости нагрева газов-реагентов. Авторы [58] получили этим методом из газовой смеси силана SiH4 и аммиака NH3 нитрид кремния Si3N4 с размером частиц 10—20 нм.

Плазмохимический метод используется и для получения порошков металлов. Например, ультрадисперсные порошки меди с размером частиц менее 100 нм и сравнительно узким распределением частиц по размеру получают восстановлением хлорида меди водородом в аргоновой электродуговой плазме с температурой до 1800 К.

Газофазный синтез с использованием лазерного излучения для создания и поддержания плазмы, в которой происходит химическая реакция, оказался эффективным методом получения молекулярных кластеров. Молекулярные кластеры — новая структурная модификация вещества, поэтому обсудим более подробно достигнутые в области плазмохимического газофазного синтеза успехи и открывающиеся возможности создания ранее не известных полиморфных модификаций веществ с нанометро-вьши размерами структурных элементов.

Молекулярные кластеры занимают совершенно особое место среди веществ, имеющих наноструктуру. Наиболее известны среди них фуллерены — новая аллотропная модификация угле25

I

рода наряду с графитом и алмазом. Центральное место среди фуллеренов принадлежит молекуле Q,,, имеющей наиболее высокую симметрию и как следствие наибольшую стабильность. По форме молекула фуллерена Ст напоминает покрышку футбольного мяча и имеет структуру правильного усеченного икосаэдра. В молекуле фуллерена Са, атомы углерода образуют замкнутую полую сферическую поверхность, состоящую из пяти- и шести-членных колец, причем каждый атом имеет координационное число, равное трем, и находится в вершинах двух шестиугольников и одного пятиугольника. Высокой стабильностью обладает также фуллерен С7(„ имеющий форму замкнутого сфероида. Фуллерены можно рассматривать как сферическую форму графита, поскольку механизмы межатомного связывания и в фулле-рене и в объемном графите в очень большой степени подобны.

Очень необычны свойства фуллеренов. Так, кристаллические фуллерены представляют собой полупроводники с фотопроводимостью при оптическом излучении, а кристаллы Сб(|, легированные атомами щелочных металлов, обладают металлической проводимостью и переходят в сверхпроводящее состояние при 30 К и выше. Превращение кристаллического фуллерена в алмаз происходит даже при комнатной температуре при давлении 20 ГПа, а при нагреве фуллерена до 1500 К для перехода в алмаз достаточно давления 7 ГПа (для аналогичного превращения графита в алмаз требуются температура 900 К и давление 30—50 ГПа). Растворы фуллеренов имеют нелинейные оптические свойства, что проявляется в резком снижении прозрачности раствора при превышении некоторого критического значения интенсивности оптического излучения. Фулле-ренам как молекулярным кластерам посвящены тысячи оригинальных статей, десятки обзоров и монографий, поэтому в данной книге они только упоминаются в связи с синтезом нового класса молекулярных кластеров, имеющих состав М8С,2, где М — атом металла.

После открытия молекулярных кластеров углерода и первых наблюдений молекулы фуллерена С60 [62—64], после интенсивных и разнообразных исследований синтеза, строения и свойств фуллеренов (см., например, [65—67]) прилагались очень большие усилия для получения молекулярных кластеров других веществ. Ожидалось, что они по аналогии с фуллеренами должны иметь уникальные физические и химические свойства, отличные.

26 ;

от свойств известных полиморфных модификаций этого же вещества. Поиски новых молекулярных кластеров увенчались открытием в 1992 году [68] нового необычного стабильного заряженного кластера Ti8C{2, соответствующего молекуле стехиометрического состава TisC]2 в форме пента-гондодекаэдра (рис. 1.2). В идеальной додекаэдрической молекуле все атомы расположены на сфере, а ее поверхность, полученная соединением ближайших атомов, состоит из 12 правильных пятиугольников.

страница 10
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

Скачать книгу "Нанокристаллические материалы: методы получения и свойства" (1.38Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
вытянуть хлопушку в машине сочи
акрилайт
ручка diandra латунь полированная
где научиться ремонту кондиционеров

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(20.10.2017)