химический каталог




Применение автомобильных бензинов

Автор А.А.Гуреев

Для предотвращения каталитического действия металлов на такие продукты, как перекись водорода, некоторые витамины, животные и растительные жиры, растительные соки,. резина, некоторые синтетические волокнистые вещества, фотореагенты, душистые и лекарственные вещества ит. д., с успехом применяются специальные присадки, получившие название деактиваторов (инактиваторов) металлов 194, 95].

Разработка вопросов применения деактиваторов в качестве присадок для топлив началась в связи с тем, что было замечено весьма быстрое окисление крекинг-бензинов, очищенных солями меди. Следы меди, оставшиеся в бензине после очистки, вызывали сильное смолообразование, ухудшение цвета бензина и т. д. [84, 96, 97]. Первоначально исследователи пошли по пути изыскания методов для полного удаления следов меди из бензина. Исследовались различные способы экстракции меди, но все они требовали специального оборудования, сопровождались большим расходом реагентов и не всегда полностью удаляли следы меди.

В 1939 г. была опубликована первая работа о деактивирующих присадках, препятствующих каталитическому действию растворенной меди на смолообразование в бензинах [84]. Авторы этой работы показали, что механизм действия деактиваторов металла принципиально отличается от механизма действия обычных антиокислителей. Достаточно сказать, что эффективный деактиватор может вообще не обладать антиокислительньши свойствами. На

251

основании немногочисленных зарубежных исследований можно предположить следующий механизм действия деактиваторов [94]. При окислении бензинов в присутствии металлов имеет место гомогенный катализ, и металл, оказывающий каталитическое действие, находится в ионном состоянии. Действие соединений, подавляющих каталитическую активность металла, объясняется тем, что они обладают способностью образовывать с ионами металлов комплексные соединения неионного характера. Такие комплексы не оказывают каталитического действия и поэтому не вызывают ускоренного окисления.

Способность органических продуктов образовывать комплексные соединения с металлами известна давно. Однако своеобразие практического применения их в качестве деактиваторов металла для топлив нефтяного происхождения выдвигает ряд новых, самостоятельных теоретических проблем. Известно, что простейшие органические соединения, содержащие хотя бы один гетероатом (азот, кислород, сера или фосфор), уже обладают координационными связями и способны образовывать с медью комплексные соединения, но такие соединения обладают малой стабильностью и в их присутствии каталитическое влияние меди на окисление бензинов сохраняется.

Органические соединения, имеющие два гетероаТома, образуют более устойчивые комплексы, так как координационные связи гетеро-атомов, замыкаясь на металл, образуют своеобразные кольца, обладающие известной прочностью. Например, этилендиамин образует «с медью комплекс типа:

Н2С—H2N. ,NH2— СН2

I I

н2с—H2N' 'NH2—СН2

В результате замыкания координационных связей концевых гете-роатомов образуется два пятичленных кольца. Соединения такого типа обладают большей эффективностью, чем соединения с одним гетероатомом, и в их присутствии каталитическое действие меди на окисление бензинов значительно уменьшается.

Прочность комплексного соединения зависит от того, какой именно гетероатом участвует в координационной связи. Азот, например, образует более прочные координационные связи, кислород — менее прочные [97].

Путем замыкания концевых атомов в комплексном соединении могут образовываться не только пятичленные кольца, но и кольца с большим числом атомов. Например, диаминопропан дает с медью комплексное соединение с щестичленными кольцами:

СН2—H2N4 ,NH2—Н2С \

H2cf Си ,СН2

СН2—H8N'' SNH2—Н2С /

Исследования [97] показали, что наибольшей деактивирующей способностью обладают соединения, образующие кольца из пяти или шести атомов. Прочность комплексного соединения, кроме числа атомов, зависит и от числа колец, образуемых данным соединением при комплексообразовании с медью. Большее число колец обусловливает большую прочность комплекса. Наиболее эффективные деакти-ваторы металлов найдены среди соединений, образующих с металлами так называемые внутрикомплексные соли. В таких соединениях один гетероатом связывается с металлом ионной связью, а другой — замыкает внутрикомплексное кольцо координационной связью.

Педерсен [85], исследуя различные соединения в качестве деактиваторов металла, нашел, что внутрикомплексные соли с медью могут быть следующих трех типов:

I I

R R Тип 1

I I >OR-C< Тип 2

ТнпЗ ?

Исследованные соединения, образующие с медью внутрикомплексные соли 2 типа, оказались наиболее эффективными деактиваторами. Соединения, образующие комплексы 1 и 3 типов, имеют меньшие деак-тивирующие свойства. Действительно, наибольшей устойчивостью должно обладать комплексное соединение именно 2 типа, поскольку оно имеет большее число внутрикомплексных колец (три). Комплексное соединение 3 типа тоже имеет около атома меди три коль

страница 99
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

Скачать книгу "Применение автомобильных бензинов" (2.68Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
водитель vip такси на своем авто
гетры macron
CLAS B EVO 30 FF
знак ответственный за обеспечение пожарной безопасности знак

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(26.03.2017)