![]() |
|
|
Общая химиятаэдри-ческая структура молекулы SF6, ионов [SiFo]2~t [Fe(CN6)]3~ и многих других объясняется 5р3с?2-гибридизацией атомных орбита-лей центрального атома. 44. Многоцентровые связи. По мере развития метода валентных связей выяснилось, что в некоторых случаях любая из возможных для данной молекулы валентных схем плохо согласуется с установленными на опыте свойствами этой молекулы: истинные свойства молекулы оказываются промежуточными между теми, которые приписываются ей каждой отдельной схемой. В подобных случаях структуру молекулы можно выразить набором из нескольких валентных схем. Такой способ описания молекул получил название метода наложения валентных схем. Рассмотрим, например, электронную структуру молекулы азотной кислоты HNO3. В этой молекуле атом водорода связан с атомом кислорода ковалепт-ной связью: Н: О. Атом кислорода за счет оставшегося у пего неспареиного электрона образует ковалентную связь с атомом азота: H:0:N. В свою очередь, два неспаренных электрона атома азота участвуют в образовании двух ковалентных связей со вторым атомом кислорода: Н • • О : N :: О Мы видим, что у атома азота сохранилась неподеленная пара электронов, так что здесь азот, выступая в качестве донора электронной пары, способен образовать еще одну ковалентную связь по донорно-акцепторному способу. В молекуле HN03 акцептором электронной пары атома азота является третий атом кислорода, переходящий в возбужденное состояние, в котором он обладает одной свободной 2/?-орбиталью *; $s f I fl f t N 2p HUE Таким образам, получаем следующую валентную схему молекулы азотной кислоты: Н : О s N:: О :0: пли Н-- О -N< (О Согласно последней схеме (в которой цифрами занумерованы связи азот— кислород), связи 1 и 2 в молекуле HN03 неодинаковы: связь 1—двойная, а связь 2 — простая. В действительности же эти связи во всех отношениях (энергия связи, межъядерные расстояния N—О и т. д.) равноценны. Это означает, что структуру молекулы HN03 можно с равным основанием описать аналогичной валентной схемой: >о Н—(П) г;:о Каждая из валентных схем (I) и (II) неточно описывает строение и свойства молекулы азотной кислоты: истинная структура этой молекулы является промежуточной между схемами (I) и (II) и может рассматриваться как результат сочетания (или наложения) этих валентных схем, Из сказанного не следует, что азотная кислота может реально существовать в двух различных формах (I) и (II): описание молекулы HNO3 с помощью набора валентных схем означает только, что каждая из этих схем в отдельности не соответствует истинной электронной структуре молекулы. Распределение электронов в молекуле азотной кислоты можно более точно передать следующей схемой; UO Н—О—N< * О Здесь пунктирные линии означают, что одна из общих электронных пар не принадлежит целиком ни связи 1 (схема I), ни связи 2 (схема II), по в равной степени распределена между этими связями. Иначе говоря, эта электрон-пая пара принадлежит не двум, а трем атомам — атому азота и двум атомам кислорода; образованная ею связь является, следовательно, не двухцептровон, а трехцентровон. Электронная структура иона СО\~ может быть представлена тремя валентными схемами /°' ^° /°~ о=сг 'О-СУ' "О—с электроном. Такой переход требует затраты энергии. Напомним, что правило Хунда (см. § 32) не запрещает подобных возбужденных состояний, а лишь указывает на их меньшую устойчивость по сравнению с основным (певозбуж-денным) состоянием атома. каждая из которых указывает на неравноценность связей углерод — кислород. Такой вывод не соответствует действительности: все три связи С—О в ионе СО3" равноценны. Истинное строение этого иона может рассматриваться как результат наложения всех трех приведенных валентных схем, т. е. может быть представлено в следующей форме: О—С Здесь, как и раньше, пунктирные линии означают, что одна из общих электронных пар в разной степени распределена между всеми тремя связями С—О, Эта электронная пара принадлежит всем четырем атомам, входящим в состав иона COg"; образованная ею ковалентная связь — четырехцентровая. Примерами молекул с многоцентровыми связями могут служить также мо* леку л ы бензола (стр. 462) и диборана (стр. 612). Как указывалось в § 39, одно из положений метода ВС заключается в том, что все химические связи являются двухцентровыми. Однако на самом деле, как показывают рассмотренные выше примеры, в ряде случаев правильнее считать двухэлектроиные связи миогоцептровыми. 45. Метод молекулярных орбиталей. Как было показано в предыдущих параграфах, метод ВС позволяет понять способность атомов к образованию определенного числа ковалентных связей, объясняет направленность ковалентыой связи, дает удовлетворительное описание структуры и свойств большого числа молекул. Однако в ряде случаев метод ВС не может объяснить природу образующихся химических связей или приводит к неверным заключениям о свойствах молекул. Так, согласно методу ВС, все ковалентные связи осуществляются общей парой электронов. Между |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|