![]() |
|
|
Общая химияз них цинка. В свободном состоянии эти элементы представляют собой серебристо-белые мягкие металлы с низкими температурами плавления. На воздухе они довольно стойки, воду не разлагают, но легко растворяются в кислотах, а галлий и индий — также и в щелочах. Кроме максимальной степени окнсленности, равной +3, они могут проявлять и меньшую. В частности, для таллия характерны соединения, где его степень окнсленности равна +1. Оксиды и гидроксиды галлия(III) и индия(III) амфотерны; гидроксид же таллия Т1(ОН)3 обладает только основными свойствами. Соединения таллия(I) сходны, с одной стороны, с соединениями щелочных металлов, с другой, — с соединениями серебра. Так, оксид таллия (I) Т120 энергично соединяется с водой, образуя гидроксид, отвечающий формуле ТЮН, — сильное, хорошо растворимое в воде основание. Большинство солей таллия(I) легко растворяется в воде, но соли галогеноводородов, подобно солям серебра, почти нерастворимы и отличаются светочувствительностью; исключение состав* ляет TIF, который как и AgF, хорошо растворим в воде. Металлическим галлием пользуются для наполнения кварцевых термометров, служащих для измерения высоких температур. Галлий плавится при 29,8°С, а закипает только при 2205°С, так что такие термометры позволяют измерять температуры до 1000 °С и выше, что невозможно при употреблении обычных термометров. Добавлением галлия к алюминию получают сплавы, хорошо поддающиеся горячей обработке; сплавы галлия с золотом применяются в ювелирном и зубопротезном деле. Индий используется вместо серебра для покрытия рефлекторов; рефлекторы, покрытые индием, со временем не тускнеют, и поэтому их коэффициент отражения остается постоянным. Индий применяется также для покрытия вкладышей подшипников и в качестве одного из компонентов сплава для плавких предохранителей. В качестве присадок к германию и в виде интерметаллических соединений с мышьяком и с сурьмой галлий и индий применяются в полупроводниковой электронике. Таллий и его соединения имеют небольшое по объему, но разнообразное применение. Галогениды таллия хорошо пропускают инфракрасные лучи. Поэтому они используются в оптических приборах, работающих в инфракрасной области спектра. Карбонат таллия служит для изготовления стекол с высокой преломляющей способностью. Таллий входит в состав вещества электрода селенового выпрямителя, является активатором многих люминофоров. Сульфид таллия используется в фотоэлементах. Металлический таллий — компонент многих свинцовых сплавов: подшипниковых, кислотоупорных, легкоплавких. Таллий и его соединения весьма токсичны. ПОБОЧНАЯ ПОДГРУППА ТРЕТЬЕЙ ГРУППЫ. ЛАНТАНОИДЫ. АКТИНОИДЫ Элементы побочной подгруппы третьей группы и семейство, состоящее из четырнадцати /-элементов с порядковыми номерами от 58 до 71, весьма близки друг к другу по своим химическим и физико-химическим свойствам. Эти элементы следуют в периодической системе после лантана и потому называются л а н т а п о и «, дам и (или лантан и дам и). Иногда их вместе с элементами побочной подгруппы третьей группы называют редкоземельными металлами. Редкоземельные металлы обычно находятся в природе совместно. Они образуют минералы, представляющие собой твердые растворы родственных соединений различных металлов. Например, один из главных источников редкоземельных металлов — минерал монацит — состоит в основном из фосфатов церия, лантана, иттрия и других редкоземельных металлов. Таким образом, природным сырьем, из которого получают как элементы побочной подгруппы третьей группы, так и лантаноиды, служат одни и тс же минералы. Актиноиды (или а к т н н и д ы) — это семейство четырнадцати f-элементов с порядковыми номерами от 90 до 103, следующее в периодической системе после актиния. 220. Подгруппа скандия. В побочную подгруппу третьей группы входят элементы скандий, иттрий, лантан и актиний. Их атомы содержат по два электрона в наружном электронном слое и по 9 электронов в следующем за ним слое; строение этих двух электронных слоев можно выразить формулой (п — l)s2(n — 1)/}6(л—\)dxns2. Каждый из этих элементов открывает собой соответствующую декаду -элементов. Некоторые их свойства приведены в табл. 36. Степень окнсленности элементов подгруппы скандия в большинстве их соединений равна +3. Таблица 36. Некоторые свойства элементов побочной подгруппы третьей группы Sc Y La Ac Строение внешнего и пред- 3s23p6MlAs2 4s4p4dl5s2 6s26pe6^7s2 внешнего электронных слоев атома Радиус атома, нм 0,164 0,181 0,187 0,203 Энергия ионизации Э->Э+, эВ ' 6,56 6,22 5,58 5,1 Э+->Э2+, эВ 12,8 12,24 11,06 12,1 Э2+^Э3+, эВ 24,75 20,5 19,17 ш » , Радиус иоиа S>3f, им 0,083 0.097 0,104 0.П1 Плотность, г/см3 3,02 4,48 6,16 10,1 Температура плавления, °С 1541 1528 920 1040 ±50 Температура кипения, °С Примерно Примерно Примерно Примерно 2850 3300 3450 3300 Скандий, иттрий п лантан содержатся в земной коре в количествах порядка 10~3 % (масс). Актиний содержится в значительно меньшем количестве [порядка Ю- |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|