![]() |
|
|
Общая химия700 0,015 0,313 3,37 0,11 2,35 25,3 800 900 1000 22,4 103,1 361,3 168 773 2710 * При взаимодействии 1 кг гидрида кальция с водой образуется около 1000 л водорода, Для того чтобы нарушить установившееся равновесие и вызвать образование нового количества оксида кальция, нужно или повысить температуру, или удалить часть образовавшегося диоксида углерода, уменьшив тем самым его парциальное давление. Если при некоторой температуре парциальное давление диоксида углерода поддерживается более низким, чем давление диссоциации, то разложение карбоната кальция идет непрерывно. Поэтому при обжигании извести важную роль играет хорошая вентиляция печи, способствующая удалению С02 и позволяющая вести разложение при более низкой температуре. Если облить жженую известь водой, то вода впитывается пористыми кусками извести и реагирует с ней с выделением значительного количества теплоты. При этом часть воды превращается в пар, а куски извести рассыпаются в рыхлую массу гидроксида кальция: СаО + Н20 = С а (ОН) 2 -f 65 кДж Эта операция носит название гашения извести, а образующийся продукт называется в технике гашеной известью. Гидроксид кальция Са(ОН)2 — сильное основание, мало растворимое в воде; 1 л воды растворяет при 20 °С всего 1,56 г Са(ОН)2. Насыщенный раствор гидроксида кальция называется известковой водой и имеет щелочную реакцию. На воздухе известковая вода быстро становится мутной вследствие поглощения ею диоксида углерода и образования нерастворимого карбоната кальция. Гашеную известь широко используют в строительном деле. Смесь ее с песком и водой называется известковым раствором и служит для скрепления кирпичей при кладке стен. Гашеную известь применяют также в качестве штукатурки. Затвердевание извести происходит сначала из-за испарения воды, а затем в результате поглощения гашеной известью диоксида углерода из воздуха и образования карбоната кальция: Са(ОН)2 -f С02 = СаС03 -f Н20 Вследствие небольшого содержания С02 в воздухе процесс затвердевания протекает очень медленно, а так как при этом выделяется вода, то в зданиях, построенных с применением известкового раствора, долго держится сырость. Важнейшие соли кальция были рассмотрены при описании соответствующих кислот. 212. Жесткость природных вод и ее устранение. Ввиду широкой распространенности кальция, соли его почти всегда содержатся в природной воде. Из природных солей кальция только гипс несколько растворим в воде, однако, если вода содержит диоксид углерода, то карбонат кальция тоже может переходить в раствор в виде гидрокарбоната Са(НС03)2. Природная вода, содержащая в растворе большое количество солей кальция или магния, называется жесткой водой в противоположность мягкой воде, содержащей мало солей кальция и магния или совсем не содержащей их. Суммарное содержание этих солей в воде называется ее общей жесткостью. Она подразделяется иа карбонатную и некарбонатную жесткость. Первая из них обусловлена присутствием гидро- карбонатов кальция и магния, вторая — присутствием солеи сильных кислот — сульфатов или хлоридов кальция и магния. При длительном кипячении воды, обладающей карбонатной жесткостью, в ней появляется осадок, состоящий главным образом из СаСОз, и одновременно выделяется С02. Оба эти вещества появляются вследствие разложения гпдрокарбоната кальция: Са(НС03)2 = СаС03| + C02f + Н20 Поэтому карбонатную жесткость называют также временной жесткостью. Количественно временную жесткость характеризуют содержанием гидрокарбоиатов, удаляющихся из воды при ее кипячении в течение часа. Жесткость, остающаяся после такого кипячения, называется постоянной жесткостью. В СССР жесткость воды выражают суммой миллиэквивалеп-тов попов кальция и магния, содержащихся в 1 л воды. Один мил-лиэквивалент жесткости отвечает содержанию 20,04 мг/л Са2+" или 12,16 мг/л Mg2+. Жесткость природных вод изменяется в широких пределах. Она различна в разных водоемах, а в одной и той же реке изменяется в течение года (минимальна во время паводка). В табл. 33 приведены величины жесткости воды некоторых рек СССР в летний период. Таблица 33. Жесткость воды некоторых рек СССР Гека Пункт Жесткость воды, мэкв'л
общая карбонатная некарбонатная Волга г. Вольск 5,9 3,5 2,4 Днепр с. Разумовка 3,7 3,2 0,5 Дон ст. Аксакайская 5,6 4,3 1,3 Енисей г. Красноярск 1,3 1.2 0,1 Москва с. Татарово 4,2 4,1 0,1 Нева с. Ивановское 0,5 0,5 0 Жесткость вод морей значительно выше, чем рек и озер. Так, вода Черного моря имеет общую жесткость 65,5 мэкв/л. Среднее значение жесткости воды мирового океана 130,5 мэкв/л (в том числе на Са2+ приходится 22,5 мэкв/л, на Mg2+— 108 мэкв/л). Присутствие в воде значительного количества солей кальция или магния делает воду непригодной для многих технических целей. Так, при продолжительном питании паровых котлов жесткой водой их стенки постепенно покрываются плотной коркой накипи. Такая корка уже при толщине слоя в 1 мм сильно понижает передачу теплоты стенками |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|