![]() |
|
|
Общая химиялигандамп (или аддендами) и образующих внутреннюю координационную сферу соединения. Остальные ионы, не разместившиеся во внутренней сфере, находятся на более далеком расстоянии от центрального иона, составляя внешнюю координационную сферу. Число лигандов, окружающих центральный ион, называется ко* ординационным числом. Внутренняя сфера комплекса в значительной степени сохраняет стабильность при растворении. Ее границы показывают квадрат* ными скобками. Ионы, находящиеся во внешней сфере, в растворах легко отщепляются. Поэтому говорят, что во внутренней сфере ионы связаны неионогенно, а во внешней — ионогенно. Например, координационная формула комплексной соли состава Р1С14-2КС1 такова: K^IPtCle]. Здесь внутренняя сфера состоит из. центрального атома платины в степени окнсленности +4 и хлорид-ионов, а ионы калия находятся во внешней сфере. Не следует думать, что комплексные соединения всегда построены из ионов; в действительности эффективные заряды атомов и молекул, входящих в состав комплекса, обычно невелики. Более правильно поэтому пользоваться термином «центральный атом». Ионные представления о природе связи в комплексных соединениях носят в некоторой степени формальный характер, однако они удобны для классификации и определения зарядов комплексов и позволяют качественно предсказать некоторые их свойства. Координационная теория Вернера является руководящей в химии комплексных соединений и в настоящее время. С течением времени изменяются и уточняются лишь представления о силах, действующих между центральным атомом и лигандами (см. § 206). Широкое распространение этой теории объясняет, почему комплексные соединения часто называют «координационными соединениями». Существует ряд методов установления координационных формул комплексных соединений. С помощью реакций двойного обмена. Именно таким путем была доказана структура следующих комплексных соединений платины: PtCl4-6NH3, PtCl4-4NH3, PtCl4-2NH3, PtCI4-2KCl. Если подействовать на раствор первого соединения раствором AgN03, то весь содержащийся в нем хлор осаждается в виде хлорида серебра. Очевидно, что все четыре хлорид-иона находятся во внешней сфере и, следовательно, внутренняя сфера состоит только из молекул аммиака. Таким образом, координационная формула соединения будет [Pt(NH3)6]С14. В соединении PtCl4*4NH3 нитрат серебра осаждает только половину хлора, т. е. во внешней сфере находятся только два хлорид-иона, а остальные два вместе с четырьмя молекулами аммиака входят в состав внутренней сферы, так что координационная формула имеет вид [Pt (NH3) 4С12] С12. Раствор соединения PtCl4-2NH3 не дает осадка с AgN03, это соединение изображается формулой [Pt (NH3bCI4]. Наконец, из раствора соединения PtCl4-2KCl нитрат серебра тоже не осаждает AgCl, но путем обменных реакций можно установить, что в растворе имеются ионы калия. На этом основании строение его изображается формулой К2 [PtCle] - * Молярная электрическая проводимость раствора ц равна электрической проводимости объема раствора, содержащего 1 моль вещества и заключенного между электродами, находящимися на расстоянии в 1 см друг от друга. Значения (х выражаются в Ом~1,см2-моль~1, По молярной электрической проводимости разбавленных растворов*. При сильном разбавлении молярная электрическая проводимость jx комплексного соединения определяется зарядом и числом образующихся ионов. Для соединений, содержащих комплексный ион и однозарядные катионы или анионы, имеет место следующее примерное соотношение: Число ионов, на которые распадается молекула Qm_i .с$.моль-х 100 250 электролита 2 3 Число ионов, на которые распадается молекула электролита 4 5 м-. Ом -см -моль"" 400 500 Измерение электрической проводимости подтверждает приведенные выше координационные формулы комплексов платины. Электрическая проводимость их изменяется, как показано на диаграмме (рис. 155). Для первого соединения р ж 500, что указывает на образование при его диссоциации пяти ионов и соответствует координационной формуле [Pt (NH3) 6] СЦ. По мере замещения во внутренней сфере молекул NH3 на ионы С1~ электрическая проводимость падает и становится минимальной для неэлектролита [Pt(NH3)2Cl4]. При переходе к соединению К2 [PtCI6] электрическая проводимость вновь возрастает, а значение ее соответствует образованию при диссоциации трех ионов. Рентгеноструктурным методом. Координационная формула комплексного соединения, находящегося в кристаллическом состоянии, может быть непосредственно установлена путем определения взаимного положения атомов и молекул в кристалле рентгеноструктурным методом (см. § 50). Однако для этого требуется вырастить достаточно крупный и неискаженный кристалл комплексного соединения, что не всегда возможно. Существует и ряд других физико-химических методов установления координационных формул комплексных соединений. Анализируя координационные числа многих комплексных соединений, А. Вернер пришел к выводу, что заряд центрального кона (или, точнее, степень окнсленности центральн |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|