![]() |
|
|
Общая химияие атомной массы. Однако, исходя из получаемых этими методами приближенных величин, легко находить точные значения атомных масс. Для этого надо сравнить найденное приближенное значение молярной массы атомов элемента с его эквивалентной массой. Такое сравнение оказывается полезным, поскольку между молярной массой атомов элемента и его эквивалентной массой существует соотношение, в которое входит также валентность элемента. Рассмотрим последнее понятие несколько подробнее. Валентность. Понятие о валентности было введено в химию в середине XIX века. Связь между валентностью элемента и его положением в периодической системе была установлена Менделеевым. Он же ввел понятие о переменной валентности. С развитием теории строения атомов н молекул понятие валентности получило физическое обоснование. Валентность — сложное понятие. Поэтому существует несколько определений валентности, выражающих различные стороны этого понятия. Наиболее общим можно считать следующее определение: валентность элемента — это способность его атомов соединяться с другими атомами в определённых соотношениях. Первоначально за единицу валентности была принята валентность атома водорода. Валентность другого элемента можно при этом выразить числом атомов водорода, которое присоединяет к себе или замещает один атом этого другого элемента. Определенная таким образом валентность называется валентностью в водородных соединениях или валентностью по водороду: так, в соединениях НО, Н20, NH3, СН4 валентность по водороду хлора равна единице, кислорода — двум, азота — трем, углерода — четырем. Валентность кислорода, как правило, равна двум. Поэтому, зная состав или формулу кислородного соединения того пли иного элемента, можно определить его валентность как удвоенное число атомов кислорода, которое может присоединить один атом данного элемента. Определенная таким образом валентность называется валентностью элемента в кислородных соединениях или валентностью по кислороду: так, в соединениях N20, СО, Si02, S03 валентность по кислороду азота равна единице, углерода — двум, кремния — четырем, серы — шести. У большинства элементов значения валентности в водородных и в кислородных соединениях различны: например, валентность серы по водороду равна двум (H2S), а по кислороду шести (S03). Кроме того, большинство элементов проявляют в разных своих соединениях различную валентность. Например, углерод образует с кислородом два оксида: монооксид углерода СО и диоксид углерода С02. В монооксиде углерода валентность углерода равна двум, а в диоксиде — четырем. Из рассмотренных примеров следует, что охарактеризовать валентность элемента каким-нибудь одним числом, как правило, нельзя. Кроме валентности по водороду и по кислороду, способность атомов данного элемента соединяться друг с другом или с атомами других элементов можно выразить иными способами: например, числом химических связей, образуемых атомом данного элемента (ковалентность, см. § 39), или числом атомов, непосредственно окружающих данный атом (координационное число, см. стр. 154 и 564). С этими и близкими к ним понятиями будем знакомиться после изучения теории строения атома. Между валентностью элемента в данном соединении, молярной массой его атомов и его эквивалентной массой существует простое соотношение, непосредственно вытекающее из атомной теории и определения понятия «эквивалентная масса». Пусть, например, валентность элемента по водороду равна единице. Это значит, что один моль атомов данного элемента может присоединить или заместить один моль атомов водорода, т. е. один эквивалент водорода. Следовательно, эквивалентная масса этого элемента равна молярной массе его атомов. Но если валентность элемента равна двум, то молярная масса его атомов и его эквивалентная масса уже не будут совпадать друг с другом: эквивалентная масса будет в 2 раза меньше молярной массы. Например, эквивалентная масса кислорода (8 г/моль) равна половине молярной массы его атомов (16 г/моль), так как один моль атомов кислорода соединяется с двумя молями атомов водорода, т. е. с двумя эквивалентами водорода, так что на 1,0079 г водорода приходится 16/2 = 8 г кислорода. Эквивалентная масса алюминия, валентность которого равна трем, в 3 раза меньше молярной массы его атомов и т. д. Таким образом, эквивалентная масса элемента равна молярной массе его атомов, деленной на валентность элемента в данном соединении. Это соотношение можно записать так: Эквивалентная масса = Молярная масса атомов Валентность или Валентность = Молярная масса атомов Эквивалентная масса Валентность, определяемая последним соотношением, называется стехиометрической валентностью элемента. Пользуясь этим соотношением, нетрудно установить точное значение атомной массы элемента, если известны ее приближенное значение и точное значение эквивалентной массы. Для этого сначала находят стехиометрическую валентность элемента делением приближенного значения молярной массы атомов элемента на эквивалентную массу. Поскольку стехиометрическа |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|