![]() |
|
|
Общая химияОз + 2НС1 = СаС12 + Н20 + C02f В промышленности большие количества диоксида углерода получают при обжиге известняка: СаС03 = СаО C02f Диоксид углерода при обычных условиях—бесцветный газ, примерно в 1,5 раза тяжелее воздуха, благодаря чему его можно переливать, как жидкость, из одного сосуда в другой. Масса 1 л С02 при нормальных условиях составляет 1,98 г. Растворимость диоксида углерода в воде невелика: 1 объем воды при 20 °С растворяет 0,88 объема С02, а при 0 °С—1,7 объема. Применяется диоксид углерода при получении соды по аммиачно-хлоридному способу (см. стр. 426), для синтеза карбамида (стр. 427), для получения солей угольной кислоты, а также для газирования фруктовых и минеральных вод и других напитков. Под давлением около 0,6 МПа диоксид углерода при комнатной температуре превращается в жидкость. Жидкий диоксид углерода хранят в стальных баллонах. При быстром выливании его из баллона поглощается вследствие испарения так много теплоты, что С02 превращается в твердую белую снегообразную массу, которая, не плавясь, сублимируется при —78,5 °С. Твердый диоксид углерода под названием «сухой лед» применяется для охлаждения скоропортящихся продуктов, для производства и сохранения мороженого, а также во многих других случаях, когда требуется получение низкой температуры. Раствор С02 в воде имеет кисловатый вкус и обладает слабокислой реакцией, обусловленной присутствием в растворе небольших количеств угольной кислоты Н2С03, образующейся в результате обратимой реакции: со2 + н2о ^ н2со3 Таким образом, диоксид углерода является ангидридом угольной кислоты. Равновесие последней реакции сильно сдвинуто влево-, лишь очень небольшое количество растворенного С02 превращается в угольную кислоту. Угольная кислота Н2С03 может существовать только в водном растворе. При нагревании раствора диоксид углерода улетучивается, равновесие образования Н2С03 смещается влево, и в конце концов остается чистая вода. Угольная кислота очень слабая. В растворе она диссоциирует главным образом на ионы Н+ и НСОз" и лишь в ничтожном коли-», честве образует ионы СОз : Н2С03 ^ Н+ + НсОз ?=± 2Н+ + С023- Константа диссоциации угольной кислоты по первой ступени, учитывающая равновесие ионов со всем количеством диоксида углерода в растворе (как в форме СОг, так и в виде угольной кислоты), выражается соотношением: к , ГнЦнсо;] =4S,10-r, Константа диссоциации по второй ступени; [нсоз1 Как двухосновная кислота, угольная кислота образует два ряда солей — средние и кислые; средние соли называются карбонатами, кислые — гидрокарбонатами. Соли угольной кислоты могут быть получены или действием диоксида углерода на щелочи, или путем обменных реакций между растворимыми солями угольной кислоты и солями других кислот. Например; NaOH + С02 = NaHC03 NaHCOa + NaOH = Na2C03 + Н20 ВаС12 + Na2C03 = ВаС03ф + 2NaCl Со слабыми основаниями угольная кислота в большинстве случаев дает только основные соли, примером которых может служить карбонат гидроксомеди (СиОН)2С03. Встречающийся в природе минерал такого состава называется малахитом. При действии кислот, даже таких слабых, как уксусная, все карбонаты разлагаются с выделением диоксида углерода. Этой реакцией часто пользуются для открытия карбонатов, так как выделение С02 легко обнаружить по характерному шипению. При нагревании все карбонаты, кроме солей щелочных металлов, разлагаются с выделением С02. Продуктами разложения в большинстве случаев являются оксиды соответствующих металлов, например; MgC03 = MgO + C02f CaC03 = СаО + C02f Гидрокарбонаты щелочных металлов при нагревании переходят в карбонаты; 2NaHC03 « Na2C03 + C02f + Н20 Большинство гидрокарбонатов, а также карбонаты калия, натрия, рубидия, цезия и аммония растворимы в воде; карбонаты других металлов в воде нерастворимы. Растворы карбонатов щелочных металлов вследствие гидролиза имеют сильнощелочную реакцию Na2C03 + H20 ^=fc NaHC03 + NaOH или СО?" + H20 5F=* HCO3 + ОН" Из солей угольной кислоты в природе чрезвычайно распростра-. ней карбонат кальция СаС03. Он встречается в виде известняка, мела, мрамора, Карбонат кальция нерастворим в воде. Поэтому известковая вода (раствор гидроксида кальция) при пропускании через нее диоксида углерода мутнеет: Са(ОН)2 -f С02 *= CaC03j + Н20 Однако, если пропускать С02 через известковую воду долгое время, то мутная вначале жидкость постепенно светлеет и наконец становится совершенно прозрачной. Растворение происходит вследствие образования кислой соли — гидрокарбоната кальция: СаС03 + Н20 + С02 = Са(НСОэ)2 Гидрокарбонат кальция — вещество непрочное. При кипячении раствора или продолжительном его стоянии на воздухе гидрокарбонат разлагается с выделением С02 и образованием средней соли. Растворимостью гпдрокарбонатов в воде объясняется постоянное передвижение карбонатов в природе. Почвенные и грунтовые воды, содержащие С02, просачиваясь сквозь почву и особенно сквозь пласты известняка, растворяют карбонат кальция и уносят его с собой в виде ги |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|