![]() |
|
|
Общая химияй нагрев при температуре около 3000 °С, американским, а одновре- менно и шведским ученым удалось получить синтетические алмазы. В Советском Союзе также разработан метод получения синтетиче- ских алмазов, а в 1961 г. начато их промышленное производство. Кроме того, в 1969 г. в СССР синтезированы нитевидные кристаллы >————— .—— ——. —— ? * Подобное тетраэдрическое расположение связей, образуемых атомом углерода, характерно также для предельных углеводородов и их производных 1см. § 162). Рис. 118. Структура графита алмаза, причем их получают при обычном давлении. Нитевидные кристаллы, или «усы», имеют структуру, практически лишенную дефектов, и обладают очень высокой прочностью. При прокаливании в кислороде алмаз сгорает, образуя диоксид углерода. Если сильно нагреть алмаз без доступа воздуха, то он превращается в графиг. Графит представляет собой темно-серые кристаллы со слабым металлическим блеском. Он имеет слоистую решетку. Все атомы углерода находятся здесь в состоянии 5р2-гибриди-зации: каждый из них образует три ковалентные а-связи с соседними атомами, причем углы между направлениями связей равны 120°. В результате возникает плоская сетка, составленная из правильных шестиугольников, в вершинах которых находятся ядра атомов углерода; расстояние между соседними ядрами составляет 0,1415 нм. В образовании а-связей участвуют три электрона каждого атома углерода. Четвертый электрон внешнего слоя занимает 2р-орби-таль, не участвующую в гибридизации. Такие негибридные электронные облака атомов углерода ориентированы перпендикулярно плоскости слоя и, перекрываясь друг с другом, образуют делокали-зованные я-связи *. Структура графита показана на рис. 118. Соседние слои атомов углерода в кристалле графита находятся на довольно большом расстоянии друг от друга (0,335 нм); это указывает на малую прочность связи между атомами углерода, расположенными в разных слоях. Соседние слои связаны между собой в основном силами Ван-дер-Ваальса, но частично связь имеет металлический характер, т. е. обусловлена «обобществлением» электронов всеми атомами кристалла **. Этим объясняется сравнительно высокая электрическая проводимость и теплопроводность графита не только в направлении слоев, но и в перпендикулярном к ним направлении. Рассмотренная структура графита обусловливает сильную анизотропию его свойств. Так, теплопроводность графита в направлении плоскости слоев равна 4,0 Дж/(см-с-К), а в перпендикулярном направлении составляет 0,79 Дж/(см-с-К). Электрическое сопротивление графита в направлении слоев в 104 раз меньше, чем в перпендикулярном направлении. собой сравнительно слабо, легко отделяются друг от друга. Этим -' « »»?.-" ?—..«.«, ... I * Аналогично образуются а- и я-связи в молекуле бензола. Подробнее эта система связей будет рассмотрена в § 167. ** Природа металлической связи обсуждается в § 190, Отдельные слои атомов в кристалле графита, связанные между объясняется малая механическая прочность графита. Если провести куском графита по бумаге, то мельчайшие кристаллики графита, имеющие вид чешуек, прилипают к бумаге, оставляя на ней серую черту. На этом основано применение графита для изготовления карандашей. На воздухе графит не загорается даже при сильном накаливании, но легко сгорает в чистом кислороде, превращаясь в диоксид углерода. Благодаря электрической проводимости графит применяется для изготовления электродов. Из смеси графита с глиной делают огнеупорные тигли для плавления металлов. Смешанный с маслом графит служит прекрасным смазочным средством, так как чешуйки его, заполняя неровности материала, создают гладкую поверхность, облегчающую скольжение. Графит применяют также в качестве замедлителя нейтронов в ядерных реакторах. Кроме природного, в промышленности находит применение искусственный графит. Его получают главным образом из лучших сортов каменного угля. Превращение происходит при температурах около 3000°С в электрических печах без доступа воздуха. На основе естественного и, особенно, искусственного графита изготовляют материалы, применяемые в химической промышленности. Благодаря их высокой химической стойкости они используются для футеровки, изготовления труб и др. Графит термодинамически устойчив в широком интервале температур и давлений, в частности при обычных условиях. В связи с этим при расчетах термодинамических величин в качестве стандартного состояния углерода принимается графит. Алмаз термодинамически устойчив лишь при высоких давлениях (выше 109 Па). Однако скорость превращения алмаза в графит становится заметной лишь при температурах выше 1000 °С; при 1750 °С превращение алмаза в графит происходит быстро, «Аморфный» углерод (уголь). При нагревании углеродсодер-жащих соединений без доступа воздуха из них выделяется черная масса, называемая «аморфным» углеродом или просто углем. Такой углерод состоит из мельчайших кристалликов с разупорядо-ченной структурой графита. Уголь растворяется во многих расплавленных металлах, например в |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|