![]() |
|
|
Общая химиями азота, и превращение повторяется. Все промышленные установки синтеза аммиака работают с использованием принципа циркуляции: после реакции смесь газов охлаждается, содержащийся в ней аммиак конденсируется и отделяется, а непрореагировавшие азот и водород смешиваются со свежей порцией газов, снова подаются на катализатор и т. д. Применение циркуляции увеличивает производительность всей системы. Синтез аммиака можно проводить при различных давлениях от 15 до 100 МПа. Наибольшее распространение получили системы, работающие при среднем давлении (30 МПа); в экономическом отношении они наиболее целесообразны. В настоящее время синтез аммиака является основным способом связывания атмосферного азота. 139. Гидразин. Гидроксиламин. Азидоводород. Кроме аммиака, азот образует еще несколько соединений с водородом, не имеющих, однако, такого значения, как аммиак. Важнейшие из них следующие. Гидразин N2H4 — бесцветная жидкость, кипящая при 113,5°С, получается при действии гипохлорита натрия NaCIO на концентрированный раствор аммиака. Структурная формула гидразина: W хн В молекуле гидразина атомы азота имеют неподеленные пары электронов. Это обусловливает способность гидразина к реакциям присоединения. Гидразин хорошо растворяется в воде, а при взаимодействии с кислотами присоединяет по донорно-акцепторному способу один или два иона водорода, образуя два ряда солей — например хлориды гидразоиня N2H4-HC1 и N2H4-2H'C1. Таким образом, гидразин обладает основными свойствами. Гидразин — хороший восстановитель. При его горении в атмосфере воздуха или кислорода выделяется очень большое количество теплоты, вследствие чего гидразин нашел применение в качестве составной части топлива ракетных двигателей. Гидразин.и все его производные сильно ядовиты. В молекуле гидрокспламина атом азота имеет кеподелспную пару электронов. Поэтому, подобно аммиаку и гидразину, он способен к реакциям присоединения с образованием связей по допорно-акцепторному способу. Гидроксил-амин хорошо растворяется в воде, а с кислотами дает соли, например хлорид гидроксиламмония (КтНзОН)С1. Степень оккслениостк азота в гидроксиламине равна —1. Поэтому он проявляет как восстановительные, так и окислительные свойства. Однако более характерна восстановительная способность гидрокспламина. В частности, он применяется как восстановитель (главным образом в виде солей) в лабораторной практике. Кроме того, его используют в производстве некоторых органических веществ. Азидоводород, или азотистоводородная кислота, HN3 может быть получен действием азотистой кислоты HNO2 на водный раствор гидразина; он представляет собой бесцветную жидкость (темп. кип. 36 °С) с резким запахом. Азидоводород принадлежит к числу слабых кпсллот (/< = 3-10-5). В водном растворе он диссоциирует на ионы Н"1" и N3. Анион азидоводорода имеет линейное строение. Его электронную структуру можно выразить схемой: [:N=N=N:]~ Как сам азидоводород, так и его соли — азиды — очень взрывчаты. Азид свинца Pb(N3)2 применяется для снаряжения капсюлей-детонаторов. 140. Оксиды азота. Азот образует с кислородом ряд оксидов; все они могут быть получены из азотной кислоты или ее солей. Оксид азота(\), или закись азота, N20 получается при нагревании нитрата аммония: . NH4N03=N20t + 2Н20 Оксид азота(I) представляет собою бесцветный газ со слабым запахом и сладковатым вкусом. Он мало растворим в воде: один объем воды при 20 °С растворяет 0,63 объема N20. Оксид азота(I)—термодинамически неустойчивое соединение. Стандартная энергия Гиббса его образования положительна (ДСобр — 104 кДж/моль). Однако вследствие большой прочности связей в молекуле N20 энергии активации реакций, протекающих с участием этого вещества, высоки. В частности, высока энергия активации распада N20. Поэтому при комнатной температуре оксид азота(I) устойчив. Однако при повышенных температурах он разлагается на азот и кислород; разложение идет тем быстрее, чем выше температура. Ни с водой, ни с кислотами, ни со щелочью оксид азота(I) не реагирует. Электронная структура молекулы N20 рассмотрена в § 41. Вдыхание небольших количеств оксида азота (I) приводит к притуплению болевой чувствительности, вследствие чего этот газ иногда применяют в смеси с кислородом для наркоза. Большие количества оксида азота (I) действуют на нервную систему возбуждающе; поэтому раньше его называли «веселящим газом». Оксид азота(II), или окись азота, N0 представляет собой бесцветный трудно сжижаемый газ. Жидкий оксид азота (II) кипит при —151,7°С и затвердевает при —163,7°С. В воде он мало растворим: 1 объем воды растворяет при 0°С всего 0,07 объема N0. По химическим свойствам оксид азота (II) относится к числу безразличных оксидов, так как не образует никакой кислоты. Подобно N20 оксид азота (II) термодинамически неустойчив—• стандартная энергия Гиббса его образования положительна (ДОобр — 86,6 кДж/моль). Но, опять-таки подобно N20, при комнатной температуре N0 не разлагается, потому что его мол |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|