![]() |
|
|
Общая химияющиеся одинаковым составом жидкости и насыщенного пара и поэтому перегоняющиеся без изменения состава, называются постояннокипящимв или азеотропными растворами. - Подобно другим сильным кислотам, НО энергично взаимодействует со многими металлами и оксидами металлов. Соли ее называются хлоридами. Большинство их хорошо растворимы в воде* Малорастворимы AgCl, PbCi2, CuCl, Hg2Cl2. Соляная кислота — одна из важнейших кислот в химической практике. Ежегодное мировое производство соляной кислоты исчисляется миллионами тонн. Широкое применение находят также многие ее соли. Отметим важнейшие из хлоридов. Хлорид натрия NaCl, или поваренная соль, служит сырьем для получения хлора, соляной кислоты, едкого натра и карбоната нат* рия (соды), применяется в красильном деле, в мыловарении и во многих других производствах. Он служит также приправой к пище и применяется в качестве средства, предохраняющего пищевые продукты от порчи. Хлорид калия КО в больших количествах потребляется сельским хозяйством в качестве удобрения. Хлорид кальция СаС12*6Н20 употребляется для приготовления охлаждающих смесей. Безводный СаС12 широко применяют в лабораторной практике для осушения газов и обезвоживания жидких органических веществ. Хлорид ртути(\\) HgCl2, или сулема, очень сильный яд. Разбавленные растворы сулемы (1:1000) используются в медицине как сильнодействующее дезинфицирующее средство (см. также стр. 607). Хлорид серебра AgCl— наименее растворимая соль соляной кислоты. Образование осадка AgCl при взаимодействии ионов С1~ с ионами Ag+ служит характерной реакцией на хлорид-ионы. Хлорид серебра применяют в фотографической промышленности при изготовлении светочувствительных материалов. Бромоводород и иодоводород очень похожи по своим свойствам на хлороводород, но отличаются более выраженными восстановительными свойствами. Молекулярный кислород постепенно окисляет иодоводород уже при комнатной температуре, причем под действием света реакция сильно ускоряется: 4НГ -Ь 02 = 212 + 2Н20 Бромоводород взаимодействует с кислородом гораздо медленнее, в то время как при обычных условиях соляная кислота вовсе с ним не взаимодействует. Восстановительные свойства бромоводорода и иодоводорода заметно проявляются и при взаимодействии с концентрированной серной кислотой. При этом НВг восстанавливает H2S04 до S02: 2НВг + H2S04 = Br2 + S02f + 2Н20 a HI — до свободной серы или даже до H2S: 6HI + H2S04 = 3I2 -f S| + 4Н20 или 8HI + H2S04 == 4I2 -f H2Sf -Ь 4H20 Поэтому НВг трудно, a HI практически невозможно получить действием серной кислоты на бромиды или иодиды. Обычно эти галогеноводороды получают действием воды на соединения брома и иода с фосфором — РВг3 и Р1з. Последние подвергаются при этом полному гидролизу, образуя фосфористую кислоту и соответствующий галогеноводород: РВг3 + ЗН20 = Н3РОз + ЗНВг Р13 + ЗН20 = H3POj + ЗШ Раствор иодоводорода (вплоть до 50%-ной концентрации^ можно получить, пропуская H2S в водную суспензию иода. Реакция идет согласно схеме: I2 -f- H2S = S| -f 2HI Соли бромоводорода и иодоводорода называются соответственно бромидами и иод и да ми. Растворимость бромидов и иодидов в большинстве случаев подобна растворимости соответствующих хлоридов. Растворы бромидов натрия и калия под химически неправильным названием «бром» применяются в медицине как успокаиваю-щее средство при расстройствах нервной системы. Бромид серебра в больших количествах идет на изготовление фотоматериалов. Иодид калия применяют в медицине — в частности, при заболеваниях эндокринной системы. 122. Кислородсодержащие соединения галогенов. Галогены образуют ряд соединений с кислородом. Однако все эти соединения неустойчивы, не получаются при непосредственном взаимодействии галогенов с кислородом и могут быть получены только косвенным путем. Такие особенности кислородных соединений галогенов согласуются с тем, что почти все они характеризуются положительными значениями стандартной энергии Гиббса образования (см., например, в табл. 7 на стр. 194 значения AG?98 Для СЮ2, С120, С1207 и OF2). Из кислородсодержащих соединений галогенов наиболее устойчивы соли кислородных кислот, наименее—-оксиды и кислоты. Во всех кислородсодержащих соединениях галогены, кроме фтора, проявляют положительную степень окнсленности, достигающую семи. Фторид кислорода OF2 можно получить пропусканием фтора в охлажденный 2 % раствор NaOH. Реакция идет согласно уравнению: 2F2 + 2NaOH = 2NaF + Н20 + OF2f Помимо OF2 при этом всегда образуются кислород, озон и пероксид водорода. При обычных условиях OF2 — бесцветный газ с резким запахом озона. Фторид кислорода очень ядовит, проявляет сильные окислительные свойства и может служить одним из эффективных окислителей ракетных топлив. Наиболее многочисленны и важны в практическом отношении кислородные соединения хлора, которые мы и рассмотрим несколько подробнее. Как уже указывалось, кислородные соединения хлора могут быть получены только косвенными методами. Рассмотрение путей их образования нач |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|