![]() |
|
|
Общая химияСк), вызывающие коагуляцию гидро- золя оксида мышьяка(III). . Таблица 22. Пороги коагуляции (Ск) отрицательно заряженного золя As2(b электролитами Электролит Электролит (CK)X
(CK)ljC1
(CK)liC1 LiCl 58,4 1,00 MgCl3 0,717 0,012 NaCl 51,0 0,87 CaCl2 0,649 0.011 KCi 49,5 0,85 SrCl2 0,635 0,011 KN03 50,0 0,86 A1C13 0,093 0,0016 Молекулярно-адсорбционная стабилизация дисперсных систем играет большую роль в устойчивости дисперсий как в водной, так и в неводных средах. Дисперсные системы в неводных средах в принципе менее устойчивы, чем в водной среде. В неполярной и не содержащей воды дисперсионной среде частицы дисперсной фазы лишены электрического заряда. Электрический фактор стабилизации отсутствует. Между дисперсными частицами действуют только силы взаимного притяжения. Ослабление этих сил, приводящее к стабилизации дисперсных систем, может происходить в результате образования вокруг коллоидных частиц адсорбционных слоев из молекул дисперсионной среды и растворенных в ней веществ. Такие слои ослабляют взаимное притяжение частиц дисперсной фазы и создают механическое препятствие их сближению. Стабилизация дисперсных систем за счет сольватации дисперсной- фазы молекулами дисперсионной среды возможна как в полярных, так и в неполярных средах. Так, гидратация частиц глины и кремниевой кислоты имеет существенное значение для устойчивости суспензий глин и золя кремниевой кислоты в водной среде, Однако стабилизация дисперсных систем значительно более эффективна при добавлении к ним поверхностно-активных веществ (ПАВ) и высокомолекулярных соединений, адсорбирующихся на границе раздела фаз, Адсорбционные слои ПАВ и высокомолекулярных соединений, обладая упругостью и механической прочностью, предотвращают слипание дисперсных частиц. Образование таких молекулярно-адсорбционных твердообразных поверхностных слоев П. А. Ребиндер* назвал структурно-механическим фактором стабилизации дисперсных систем. Этот механизм стабилизации играет основную роль при получении предельно устойчивых высококонцентрированных пен, эмульсий, коллоидных растворов и суспензий не только в неводиых, но и в водных средах. Для структурно-механической стабилизации дисперсий в водной среде применяют мыла щелочных металлов, белки, крахмал, а в неводиых средах—мыла щелочноземельных металлов, смолы, каучуки. Такие вещества называют защитными коллоидами. 114. Структурообразование в дисперсных системах. Физико-химическая механика твердых тел и дисперсных структур. Как указывалось в § 105, дисперсные системы разделяют на две большие группы: свободнодисперсные, или неструктурированные, и связно-дисперсные, или структурированные системы. Последние образуются в результате возникновения контактов между дисперсными частицами. Особенности этих контактов зависят от природы, величины, формы, концентрации дисперсных частиц, а также от их распределения по размерам и взаимодействия с дисперсионной средой. *Петр Александрович Ребиндер (1898—1972)—советский фи-зико-химик, академик, Герой Социалистического Труда, лауреат Государственных премий, основатель крупной научной школы в области физической химии дисперсных систем. Разработанные им пути управления свойствами дисперсных систем, процессами их образования и разрушения тесно связаны с решением крупных технических задач. На рис. 104 схематично показаны виды возможных контактов между частицами в структурированных дисперсных системах. Выделяют два, резко различающихся по своим свойствам, типа пространственных структур, названных П. А. Ребиндером ко а гул я -ционными и конденсационными структурами. Основное различие этих структур состоит в неодинаковой природе контакта между частицами дисперсной фазы. В коагуляционных структурах этот контакт осуществляется или через очень тонкие прослойки дисперсионной среды (рис. 104, а) и точечные контакты (рис. 104, в), или при участии макромолекул (рис. 104,6). Конденсационные структуры возникают как результат склеивания, сваривания, срастания частиц дисперсной фазы на отдельных участках поверхности (рис. 104, г). Коагуляционные пространственные структуры образуются из ^вободнодисперсных систем, когда дисперсионное притяжение ыежду частицами преобладает над электростатическим отталки-ванием. В этом случае энергия результирующего взаимного при* Ряжения частиц сравнима с энергией их теплового броуновского Движения. На первых этапах коагуляционного взаимодействия возникают агрегаты из двух, трех, а иногда и цегЬчкй первичных дисперсных частиц; коллоидный раствор сохраняет текучесть, так как развитие структуры не дошло до образования непрерывной сетки. Возникает жидкообразная коагуляционная структура (соответствующая стадии скрытой коагулядии, см. § 113). В потоке жидкости агрегаты распадаются и вн'овь образуются; каждой скорости потока соответствует своя равновесная величина агрегатов, а следовательно, и оказываемого ими сопротивления потоку жидкости. Поэтому возникновение пространственных структур в растворах обнаруживается по изменению вязк |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|