![]() |
|
|
Общая химиять диффузии при постоянных температуре и вязкости среды зависит от величины и формы частиц. Медленность диффузии является признаком, отличающим коллоидные системы от истинных растворов низкомолекулярных веществ. \бето$ои микросноп Ультра-Микросноп Лупа ? 1 Электронный микроскоп Груи~0- Молекд лярные Тонко дисперсные Кошидные Тонкая ёзёра, Крупная ejfecb Седиментацией называют свободное оседание частиц в вязкой среде под действием гравитационного поля. Скорость оседания прямо пропорциональна ускорению гравитационного поля Земли (g), разности плотностей частиц и окружающей среды, квадрату Бактерии 101 to'- 10 10'* Поры холлоЗийнь/х мембран 10 ' 1 1Q4 Ю 10" 10' 10 ю- 10г 10 нм (мм/1 J lQJtiKM[MH) Рис. 93. Границы размеров частиц дисперсных систем и применения оптических методов определения дисперсности: / — глаз; 2 — ультрафиолетовый микроскоп. Для сравнения показан размер пор бумажных фильтров (3) и пор ультрафильтров {4), •••••*• ООО 0 0 00 ООО О О О О ООО о о Рис, 94. Схема гель-хроматографии: 1 / — на колонку с гелем (сферические светлые частицы) нанесен исследуемый раствор; 2 — после промывания колонки растворителем. 2 радиуса оседающих сферических частиц и обратно пропорциональна вязкости среды (закон Стокса, 1880 г.). Седиментируют только достаточно крупные частицы. Так, частицы кварца размером 5 мкм оседают в воде за час на 3 см. Седиментации частиц размером 1 мкм и менее препятствует броуновское движение. Поэтому истинные и коллоидные растворы, включая растворы высокомолекулярных соединений, седиментационно устойчивы, а сус-пен-зии — неустойчивы. Предоставив суспензии осаждаться под действием силы тяжести, через определенные промежутки времени определяют массу частиц, накопившихся на чашечке, погруженной в суспензию иа определенную глубину. Так можно установить распределение частиц по фракциям разного размера. Такой метод дисперсионного анализа суспензий получил название седимеитационного анализа. Его широко применяют при изучении дисперсных систем с размерами частиц от 100 до 1 мкм, в частности почв и грунтов. Применение ультрацентрифуг, в которых ускорение в миллион раз превосходит ускорение силы тяжести, дало возможность изучить седиментацию белков и других высокомолекулярных соединений, а также вирусов. За последние годы широкое применение для разделения высокомолекулярных веществ и определения их молекулярной массы нашел предложенный Л. Поратом и П. Флодииом (Швеция) метод гель-фильтрации (гель-хроматографии), Гель-хроматография состоит в фильтровании исследуемого раствора через колонки, заполненные зернами набухающего трехмерного полимера (се-фадекса). Набухшие зерна сефадекса представляют собой своеобразные «клетки», внутрь которых могут проникнуть путем диффузии только молекулы (ионы) подходящего размера. Более крупные молекулы проходят с фильтрационным потоком мимо зерен сефадекса (рис. 94). Набор различных марок сефадексов с возрастающим размером «клеток» позволяет отделять низкомолекулярные вещества от высокомолекулярных, разделять макромолекулы, изучать образование ассоциатов в макромолекулярных растворах. 109. Сорбция и сорбционные процессы. Молекулярная адсорбция. Сорбцией (от латинского «sorbeo»—поглощаю, втягиваю) называют любой процесс поглощения одного вещества (сорб-тива) другим (сорбентом), независимо от механизма поглощения. В зависимости от механизма сорбции различают адсорбцию, абсорбцию, хемосорбцию и капиллярную конденсацию. Адсорбцией называют изменение концентрации вещества на границе раздела фаз. Адсорбция происходит на любых межфа-еовых поверхностях, и адсорбироваться могут любые вещества. Адсорбционное равновесие, т. е. равновесное распределение вещества между пограничным слоем и граничащими фазами, является динамическим равновесием и быстро устанавливается. Адсорбция Уменьшается с повышением температуры. В ряде случаев поглощение одного вещества другим не ограничивается поверхностным слоем, а происходит во всем объеме сорбента. Такое поглощение называют абсорбци*ей. Примером процесса абсорбции является растворение газов в жидкостях. Поглощение одного вещества другим, сопровождающееся химическими реакциями, называют хемосорбцией. Так, поглощение аммиака или хлороводорода водой, поглощение влаги и кислорода металлами с образованием оксидов и гидроксидов, поглощение диоксида углерода оксидом кальция — примеры хемосорб-ционных процессов. Капиллярная конденсация состоит в ожижении паров в микропористых сорбентах. Она происходит вследствие того, что давление паров над вогнутым мениском жидкости в смачиваемых ею узких капиллярах меньше, чем давление насыщенного пара над плоской поверхностью жидкости при той же температуре. Таким образом, сорбционные процессы различны по их механизму. Однако любой сорбционный процесс начинается с адсорбции на границе соприкасающихся фаз, которые могут быть жидкими, газообразными или твердыми. Как указывалось в § 106, все самопроизвольные процессы на гра |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|