![]() |
|
|
Общая химия, зависящие от концен- трации ионов, проявляются так, как если бы число ионов в растворе было меньше, чем это соответствует полной диссоциации электролита. Для оценки состояния ионов в растворе пользуются величиной, называемой активностью. Под активностью иоиа понимают ту эффективную, условную концентрацию его, соответственно которой он действует при химических реакциях. Активность попа а равна его концентрации С, умноженной на коэффициент активности /: Коэффициенты активности различных ионов различны. Кроме того, они изменяются при п.;мспсшш условий, в частности, при изменении концентрации раствора. В концентрированных растворах коэффициент активности обычно меньше единицы, а с разбавлением раствора он приближается к единице. Значение /, меньшее единицы, указывает на взаимодействие между ионами, приводящее к их взаимному связыванию. Если же коэффициент активности близок к единице, то это свидетельствует о слабом межионном взаимодействии. Действительно, в очень разбавленных растворах средние расстояния между ионами настолько велики, что действие межионных сил почти не проявляется. В разбавленных растворах природа ионов мало влияет па значения их коэффициентов активности. Приближенно можно считать, что коэффициент активности данного иона зависит только от его заряда и от ионной силы раствора /, под которой понимают полусумму произведений концентраций всех находящихся в растворе ионов па квадрат их заряда: /==72 (cvJ + cV2+ ... +Cnz*n) Вычислим, например, ионную силу раствора, содержащего 0,1 моль/л хлорида натрия и 0,1 моль/л хлорида бария. Здесь концентрация ионов Na+(C\) равна 0,1 моль/л, Z\ — 1; концентрация ионов Ba2+(Cg) равна ОД моль/л, Zi — 2; общая концентрация хлорид-ионов (С3) составляет 0,1+0,1-2 = = 0,3 моль/л, 2з = —1. Таким образом / = Чг ЮЛ • I2 + ОД • 22 + 0,3 <-1)2] - i/a (0,1 + 0,4 + 0,3) = 0,4 таблицы, нетрудно, например, установить, что в упомянутом выше растворе коэффициенты активности однозарядных ионов Na+ и С1~ одинаковы и равны 0,82, а коэффициент активности двухзарядного иона Ва2+ равен 0,45. Если пользоваться значениями активности, то законы химического равновесия можно применять и к сильным электролитам. В частности, при этом можно получить значения констант диссоциации сильных кислот. В выражении константы диссоциации вместо концентраций ионов и недиссоциированных молекул будут стоять их активности. Несмотря на некоторую формальность такого рода констант, они полезны, так как дают возможность сравнивать друг с другом свойства сильных кислот. В табл. 14 приведены константы диссоциации некоторых сильных кислот, выраженные через активности. Таблица 14. Константы диссоциации некоторых сильным кислот в водных растворах при 25 СС Кислота Формула Константа диссоциации К Азотная Бромородерод Иодоводерод Марганцовая Серная Хлороводород Н.\03 НВг HI НМл04 H,S04 но 43,6 10э 10п 200 /С, = 1000: Къ=* Ю-2 ю7 87. Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации. Рассмотрим в свете теории электролитической диссоциации свойства веществ, которые в водных растворах проявляют свойства электролитов. Кислоты. Для кислот характерны следующие общие свойства: а) способность взаимодействовать с основаниями с образова- нием солей; б) способность взаимодействовать с некоторыми металлами с выделением водорода; в) способность изменять цвета индикаторов, в частности, вы- зывать красную окраску лакмуса; г) кислый вкус. При диссоциации любой кислоты образуются ионы водорода. Поэтому все свойства, которые являются общими для водных растворов кислот, мы должны объяснить присутствием гидратпро-ванных ионов водорода. Это они вызывают красный цвет лакмуса, сообщают кислотам кислый вкус и т. д. С устранением ионов водорода, например при нейтрализации, исчезают и кислотные свойства. Поэтому теория электролитической диссоциации определяет кислоты как электролиты, диссоциирующие в растворах с образованием ионов водорода. У сильны х к и с л о т, диссоциирующих нацело, свойства кислот проявляются в большей степени, у слабых — в меньшей. Чем лучше кислота диссоциирует, т. е. чем больше ее константа диссоциации, тем она сильнее. Сравнивая данные, приведенные в табл. 12 и 14, можно заметить, что величины констант диссоциации кислот изменяются в очень широких пределах. В частности, константа диссоциации циановодорода много меньше, чем уксусной кислоты. И хотя обе эти кислоты — слабые, все же уксусная кислота значительно сильнее циановодорода. Величины первой и второй констант диссоциации серной кислоты показывают, что в отношении первой ступени диссоциации H2SO4—сильная кислота, а в отношении второй — слабая. Кислоты, константы диссоциации которых лежат в интервале Ю-4 — Ю-2, иногда называют кислотами средней сил ы. К ним, в частности, относятся ор гофосфорная и сернистая кислоты (в отношении диссоциации по первой ступени). Основания. Водные растворы оснований обладают следующими общими свойс |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|