![]() |
|
|
Общая химияся голландский фнзико-химик. Изучал законы течения химических реакций, химическое равновесие, свойства растворов. Высказал и развил идею о направленности валентных связей атома углерода, разработал основы стереохимии — учения о пространственном расположении атомов в молекуле, Если к раствору, отделенному от воды полупроницаемой перегородкой, приложить внешнее давление, равное осмотическому давлению раствора, то, как уже говорилось, осмос прекратится. Сели же приложенное внешнее давление превысит осмотическое, то дпффу.'пн волы будет преимущественно происходить из раствора в водную фазу, т, е. в направлении, противоположном направлен кию переноса воды при осмосе. Такое явление получило название обратного осмоса. В настоящее время обратный осмос начали применять как один из наи* более экономичных способов опреснения воды. Солевой раствор (например» морскую воду) отделяют полупроницаемой мембраной от пресной воды и подвергают давлению белее высокому, чем осмотическое давление раствора. В результате часть содержащейся в растворе воды «вытесняется» в фазу пресной воды, а концентрация солен в оставшемся растворе повышается. Концентриро-ванный солевой раствор периодически заменяют свежими порциями подлежащей опреснению воды. 79. Давление пара растворов. При данной температуре давление насыщенного пара над каждой жидкостью — величина постоянная. Опыт показывает, что при растворении в жидкости какого» либо вещества давление насыщенного пара этой жидкости пони-, жается. Таким образом, давление насыщенного пара растворителя над раствором всегда ниже, чем над чистым растворителем при той же температуре. Разность между этими величинами принято называть понижением давления пара над раствором (или понижением давления пара раствора). Отношение величины этого понижения к давлению насыщенного пара над чистым раствори-, телем называется относительным понижением д а в л е « н и я пара над раствором. Обозначим давление насыщенного пара растворителя над' чи«; стым растворителем через ро, а над раствором через р. Тогда относительное понижение давления пара над раствором будет представлять собою дробь: (Ро — Р)/Ро В 1887 г. французский физик Рауль, изучая растворы различных нелетучих * жидкостей и веществ в твердом состоянии, установил закон, связывающий понижение давления пара над разбавленными растворами неэлектролитов с концентрацией: Относительное понижение давления насыщенного пара растворителя над раствором равно молярной доле растворенного вещества. Математическим выражением закона Рауля является уравне-* ние: (Ро — P)lPo = N2 * В случае растворов летучих веществ закономерности носят более слож* ный характер, поскольку над раствором находится смесь паров растворенного вещества и растворителя. Здесь N2— молярная доля растворенного вещества. Явление понижения давления насыщенного пара над раствором вытекает из принципа Ле Шателье. Представим себе равновесна Рис. 7S. Диаграмма состояния воды и водного раствора нелетучего вещества. (Н20) ж ид к между жидкостью, например, водой, и ее паром. Это равновесие, которому отвечает определенное давление насыщенного пара, можно выразить уравнением (Н20}ГТАР Если теперь растворить в воде некоторое количество какого-либо вещества, то концентрация молекул воды в жидкости понизится и пойдет процесс, увеличивающий ее,— конденсация пара. Новое равновесие установится при более низком давлении насыщенного пара. Понижение давления пара над раствором находит отражение на диаграмме состояния. На рис. 78 приведена схема диаграммы состояния воды и водного раствора нелетучего вещества. Согласно закону Рауля, давление водяного пара над водным раствором ниже, чем над водой. Поэтому кривая кипения для раствора лежит ниже, чем для воды. При переходе от воды к раствору изменяется также положение кривой плавления. И кривая кипения, и кривая плавления раствора расположены тем дальше от соответствующих кривых воды, чем концентрированнее раствор. 80. Замерзание и кипение растворов. Индивидуальные вещества характеризуются строго определенными температурами переходов из одного агрегатного состояния в другое (температура кипения, температура плавления или кристаллизации). Так, вода при нормальном атмосферном давлении (101,3 кПа) кристаллизуется при температуре 0 °С и кипит при 100 °С. Иначе обстоит дело с растворами. Присутствие растворенного вещества повышает температуру кипения и понижает температуру замерзания растворителя, и тем сильнее, чем концентрированнее раствор. В большинстве случаев из раствора кристаллизуется (при замерзании) или выкипает (при кипении) только растворитель вследствие чего концентрация раствора в ходе его замерзания или кипения возрастает, Это, в свою очередь, приводит к еще большему повышению температуры кипения и снижению температуры замерзания. Таким образом, раствор кристаллизуется и кипит не при определенной температуре, а в некотором температурном интервале. Температуру начала кристаллизации и начала кипения данного раствора называют его тем |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|