химический каталог




Курс физической химии. Том II

Автор Я.И.Герасимов

ений стерического множителя может быть несколько. Предполагают, что прежде всего необходима специальная ориентация при столкновении; кроме того, распределение энергии по внутренним степеням свободы каждой из реагирующих молекул должно отвечать определенной конфигурации. Если принять эти предположения, то для величины стерического множителя получится значение, совпадающее с опытным. Но, во-первых, достоверность сделанных допущений невелика, а во-вторых, остается неясной роль растворителя.

В теории активного комплекса дается качественное объяснение -реакций в растворах на основании взаимодействия между активными составляющими системы (исходными молекулами и активным комплексом) и молекулами растворителя. Например, сольватация растворителем исходных веществ приводит к увеличению энергии активации, а сольватация активного комплекса — к ее уменьшению на величину энергии сольватации. Отнюдь не умаляя значения этого объяснения, следует все же отметить, что изменения энергии активации при замене растворителей совсем не таковы, чтобы этому эффекту целиком можно было приписать наблюдаемые отклонения опытных значений от теоретических. В целом трудности, связанные с объяснением кинетических закономерностей реакций Меншуткина, до сих пор не преодолены.

§ 4. Сопряженные реакции

Если в системе идет одновременно несколько реакций, причем протекание некоторых из них возможно только при условии протекания других реакций, идущих самостоятельно, то реакция, протекающая независимо от других, и реакция, обусловленная первой, называются сопряженными реакциями.

Например, кислород легко окисляет сернистокислый натрий Na2S03, но не окисляет ЫагНАвОз,. если эти вещества взяты порознь. Если же взять их смесь, то оба они легко окисляются кислородом. Таким образом, протекание в системе реакции окисления NaaSCb вызывает реакцию окисления Na2HAs03. Или, например, перекись водорода окисляет соль закиси железа, но не взаимодействует с йодистым водородом в водном растворе. Если же к смеси закисного сернокислого железа прибавить йодистый водород, то одновременно с реакцией окисления закисного сернокислого железа происходит окисление и иодистоводородной кислоты.

Раствор индиго под действием кислорода, не обесцвечивается. Если же в раствор добавить бензальдегид, то последний будет окисляться кислородом до бензойной кислоты, а индиго одновременно окислится до изатина, и раствор при этом обесцветится.

В рассмотренных примерах мы имели такие системы двух протекающих в одной фазе реакций, из которых одна зависит в своем течении от другой, т. е. самопроизвольная (первичная) реакция обусловливает или ускоряет несамопроизвольный (вторичный) процесс. Такое явление получило название химической индукции.

Таким образом, в простейшем случае сопряженные реакции можно записать в виде схемы

А + В Первичная реакция А + С Вторичная реакция

Вещество, участвующее как в первичной, так и во вторичной реакциях (вещество А) называется актором. Вещество, которое участвует только в первичной реакции (вещество В) и которое своим взаимодействием с актором вызывает вторичный процесс, называется индуктором. Вещество, которое участвует лишь во вторичной реакции (вещество С), т. е. воспринимает эффект первичной реакции, называется акцептором. При химической индукции

в отличие от катализа концентрация всех исходных веществ в процессе реакций уменьшается.

Сопряженные реакции возможны только в том случае, если промежуточные вещества первой реакции фактически являются исходными для второй, вступая во взаимодействия с акцептором. Промежуточное вещество служит связующим звеном между первичным и вторичным процессами и обусловливает течение обоих. Например, бромноватая кислота НВгОз непосредственно окисляет H2SO3, но не окисляет H3ASO3. Если же взять смесь сернистой и мышьяковистой кислот, то бромноватая кислота будет окислять обе кислоты. Это можно объяснить, если рассматривать реакцию окисления сернистой кислоты по стадиям:

НВг03 + H2S03 —у H2S04 + HBr02 HBr02 + H..S03 —> H2S04-fHBrO HBrO-f H,S03 —>? H2S04 + HBr

Возникающие в результате этих реакций промежуточные вещества НВг02 и НВгО окисляют мышьяковистую кислоту. Здесь HBrCh является актором, H2S03— индуктором, a H3As03— акцептором.

Важной величиной, характеризующей сопряженные реакции, является фактор индукции. Введенный Н. А. Шиловым, много сделавшим в изучении реакций этого типа, фактор индукции определяется отношением

Г"1 (VII, 9)

где Дсакц — убыль концентрации акцептора; Дхинд — убыль концентрации индуктора.

Так как участие в реакции индуктора приводит к появлению в системе промежуточного продукта, вызывающего вторую реакцию (реакцию превращения акцептора), то фактор индукции можно определить еще так:

j Убыль исходного продукта

Убыль промежуточного продукта ' '

В зависимости от величины фактора индукции можно выделить три типа сопряженных реакций.

1. Если в результате индуцированной реакции произойдет частичная регенерация индуктора или промежуточного вещества, то тем большее количество исходного вещества (акцептора) будет входить в реакцию и, следовательно, тем больше окажется фактор индукции. В предельном случае, когда промежуточный продукт регенерируется нацело, знаменатель выражения (VII, 10) обратится в нуль, и фактор индукции станет равным бесконечности (/—оо). Такого типа процесс является стационарным. На практике таким процессам, как мы увидим позже, соответствуют каталитические процессы и стационарные неразветвленные цепные реакции.

2. Если в результате реакции концентрация индуктора или промежуточного продукта убывает, то, очевидно, процесс является затухающим, т. е. скорость его уменьшается. В этом случае фактор индукции будет больше нуля (/ >> 0).

3. Если же концентрация индуктора или промежуточного продукта в результате реакции возрастает, то наблюдается так называемая самоиндукция, характеризующаяся начальным самоускорением. Этому типу процессов соответствуют самоиндуктивные процессы, протекающие с начальным ускорением и, как мы увидим ниже, разветвленные цепные процессы. Так как в этом случае концентрация индуктора или промежуточного вещества увеличивается, фактор индукции будет меньше нуля (/ <С0).

Явление химической индукции интересно тем, что свободная энергия, выделяющаяся при самопроизвольной реакции, в которой участвует индуктор, может скомпенсировать затрату энергии, необходимой для образования веществ с большим запасом свободной энергии.

Интересной в этом отношении является изученная Шиловым самопроизвольная реакция окисления трехокиси мышьяка бромноватой кислотой. Чтобы реакция окисления трехокиси мышьяка бромноватой кислотой была возможна, необходимо присутствие в системе бромистого водорода. При подкислении смеси КВг03 и AS2O3 слабой кислотой реакция практически не идет. Только при большой концентрации водородных ионов оказывается возможным образование бромистого водорода по реакции

ЗАзгОз + гНВгОз^ЗАзаОд + гНВг - (а)

Вначале образуется очень немного бромистого водорода, но затем реакция окислен

страница 45
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

Скачать книгу "Курс физической химии. Том II" (5.2Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
плитка купить harmony malva
хабаровск обучение кадрам и делопроизводству
штатные головные устройства купить
аппаратный педикюр курсы в домодедово

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(09.12.2016)