химический каталог




Курс физической химии. Том II

Автор Я.И.Герасимов

Ионы галогенов в кислых растворах способствуют адсорбции ряда органических соединений (преимущественно азотсодержащих органических оснований) на поверхности Железа и мягких сталей и, следовательно, усиливают замедляющее действие ингибиторов.

Защитный антикоррозионный слой часто создают путем нанесения сплошного слоя устойчивой краски или другого металла. В последнем случае лучшим защитным действием будет обладать менее благородный металл, например железо лучше покрывать цинком, а не медью. Объясняется это тем, что при местных нарушениях покрытия коррозии будет подвергаться наименее благородный металл, так как в месте нарушения сплошной пленки возникает элемент, в котором электроны переходят от менее благородного металла к более благородному, вследствие чего первый будет растворяться.

Это явление широко используют для защиты от коррозии водопроводных труб, паровых котлов и вообще металлических конструкций. Их приводят в соприкосновение с полосами менее благородного металла и тем самым прекращают коррозию основного металла.

§ 12. Полярография

Метод изучения электрохимических процессов, основанный на установлении зависимости силы тока от напряжения, которое прикладывается к исследуемой системе, носит название вольтамперо-метрии. Первой по времени появления и наиболее точной формой вольтамперометрии является полярография.

Полярографический метод, предложенный чешским ученым Гейровским (1922), состоит в проведении электролиза исследуемых растворов в электролитической ячейке (электролизере), одним иа электродов которой является капельный ртутный электрод. Последний может служить как катодом (при изучении процессов электровосстановления), так и анодом (если исследуются растворы, содержащие способные к электроокислению вещества).

Капельный ртутный электрод (рис. XXIV, 4) представляет собой стеклянный капилляр Д через который под давлением ртутного столба медленно вытекает ртуть. Образующиеся на конце капилляра ртутные капли через равные промежутки времени (обычно в пределах 0,2-г 6 сек) отрываются от капилляра и падают на дно сосуда А. Каждая ртутная капля до момента ее отрыва служит электродом. При помощи аккумулятора F и потенциометра V к электродам С и Е полярографической ячейки прикладывают определенное напряжение и чувствительным гальванометром измеряют силу тока, который протекает через систему. При прохождении тока через ячейку в общем случае изменяются потенНапряжение

Рис. XXIV, 4. Схема полярографа Рис. XXIV, 5. Поляризационная криГейровского: вая.

С, Е — электроды; D — капилляр; А — сосуд; V — потенциометр; ^ — аккумулятор.

циалы обоих электродов; кроме того, часть приложенного напряжения падает в растворе:

где Е — внешняя разность потенциалов; фд а фк—потенциалы анода и катода; / — сила тока; R — омическое сопротивление раствора.

При полярографических измерениях в качестве вспомогательного электрода обычно применяют ртутный электрод с большой поверхностью, потенциал которого практически не изменяется при прохождении тока небольшой плотности. В исследуемый раствор (помещенный в сосуд Л) добавляют достаточный избыток индифферентного электролита, который обеспечивает высокую электропроводность раствора. Таким образом, оказывается, что

Е = — ф^. -f- const

Следовательно, изменение приложенной извне разности потенциалов при выполнении измерений указанным образом равно изменению потенциала капельного электрода.

При постепенном увеличении внешней разности потенциалов сначала весь ток идет на заряжение электрода (двойного электрического слоя), поэтому сила тока в цепи остается исчезающе малой, что указывает на отсутствие электрохимического процесса (рис. XXIV, 5). После достижения определенной разности потенциалов (точка а) происходит резкое увеличение силы поляризующего тока, что указывает на начало электрохимического процесса электровосстановления или электроокисления. По мере того как потенциал электрода и сила тока увеличиваются, концентрация восстанавливающихся или окисляющихся частиц вблизи поверхности уменьшается и наступает концентрационная поляризация. Наконец, при увеличении поляризации концентрация частиц у по- * верхности электрода падает до нуля, и ток достигает своего пре?,8

Рис. XXIV, 6. Полярограмма.

дельного значения (точка Ь). Таким образом, поляризационная кривая, т. е. кривая зависимости силы тока от потенциала электрода, имеет вид своеобразной волны. Эта кривая называется полярографической кривой, или полярограммой. Начало волны соответствует началу реакции окисления или восстановления, а высота волны, определяемая величиной предельного тока, характеризует диффузию вещества к электроду. Ввиду того что скорость диффузии пропорциональна концентрации, высота волны непосредственно связана с концентрацией реагирующих частиц. Это позволяет использовать полярографический метод для количественного анализа сложных электролитов. Потенциал, при котором величина тока достигает половины предельного тока диффузии, называется потенциалом полуволны. Величина потенциала полуволны зависит только от природы отдельного реагирующего вещества, и определение потенциалов полуволн подпрограммы дает возможность судить о качественном составе анализируемого раствора. Если в растворе одновременно присутствуют несколько ионов, которые могут восстанавливаться, то поляризационная кривая имеет вид, изображенный на рис. XXIV, 6. Увеличение силы тока происходит волнами, причем восстановление каждого катиона отражается определенной волной. Наличие на данной диаграмме трех волн показывает, что в растворе имеется три различных катиона. Природа катионов устанавливается по потенциалам полуволны, а их концентрация — по высотам соответствующих волн.

Рассмотрим более подробно явление концентрационной поляризации на капельном ртутном катоде при разряде ионов металла, например кадмия. В отличие от рассмотренного случая восстановления ионов серебра на серебряном электроде, где природа металла в процессе электролиза не меняется, при разряде ионов кадмия на ртутном катоде происходит образование амальгамы кадмия. Потенциал амальгамного электрода

RT c(s)

Е = Е° + — In (XXIV, 21)

zF сМе

где с$е ~ концентрация амальгамы кадмия вблизи поверхности электрода;

c(s) — концентрация ионов кадмия в растворе около электрода. Таким образом, чтобы найти уравнение концентрационной поляризации на капельном ртутном электроде, необходимо определить величины и с^е в зависимости от протекающего тока. Процесс диффузии к растущей сферической поверхности значительно сложнее процесса диффузии к неподвижному твердому электроду- Так как поверхность капли непрерывно увеличивается за период ее существования и, следовательно, сила тока, текущего через каплю в раствор, растет, то вводится понятие_ средней за период образования капли (между двумя падениями) силы тока /. Как показывает точный расчет, величина среднего тока диффузии на капельном ртутном электроде

Гд = 0,627z№'(с° - CW) « у, (с° - c) (XXIV, 22)

где^ис^)— концентрация ионов кад

страница 168
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

Скачать книгу "Курс физической химии. Том II" (5.2Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
проекторы напрокат
Фирма Ренессанс лестницы челябинск - качественно, оперативно, надежно!
кресло ex
KNSneva.ru - гипермаркет электроники предлагает профессиональные фотоаппараты - кредит онлайн не выходя из дома в Санкт-Петербурге!

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(11.12.2016)