химический каталог




Межфазный катализ

Автор Э.Демлов, З.Демлов

ециальных монографиях ;[41—-43].

Обычные неорганические соли натрия и калия не растворимы в неполярных органических растворителях. Это верно и для солей неорганических анионов с небольшими органическими катионами, например для тетраметнламмония. Подобные аммонийные соли часто способны, однако, растворяться в ди-хлорметане и хлороформе. Более того, использование относительно больших органических анионов может обеспечивать растворимость солей щелочных металлов в таких растворителях, как бензол. Например, диэтнл-«-бутилмалонат натрия дает 0,14 М раствор в бензоле, для которого понижение точки замерзания неизмеримо мало, что говорит о высокой степени, ассоциации. Подобным образом большие ониевые катионы (например, тетра-я-гексиламмония) делают растворимыми соли даже небольших органофобных анионов (например, гидроксид-ионов) в углеводородах. Ионофоры, т. е. молекулы, состоящие из ионов в кристаллической решетке, диссоциируют (полностью или частично) на сольватированные катионы и анионы в растворителях с высокими диэлектрическими проницаемо стями. Подобные растворы в воде являются хорошими проводниками. В менее полярных растворителях даже сильные электролиты могут растворяться с образованием растворов с низкой электропроводностью; это означает, что только часть растворенной соли диссоциирована на свободные ионы. Чтобы объяснить такое поведение растворов, Ььеррум выдвинул в 1926 г. гипотезу ионных пар. Впоследствии его гипотеза была усовершенствована Фуоссом '[38] и рядом других исследователей. Ионные пары представляют собой ассоциаты противоположно заряженных ионов и являются нейтральными частицами. Стабильность ионных нар обеспечивается в основном кулоновскими силами, но иногда этому способствует и сильное взаимодействие с ок j.2. Ионные пары в органической фазе 1У

ружающей' средой. Ионные пары — это термодинамически индивидуальные частицы, находящиеся в равновесии со свободными ионами:

[Q+X] -«->- Q++XГлавное различие между свободными нонами н ионными парами состоит в том, что растворы, содержащие только ионные-пары, не проводит электрический ток. Таким образом, измерение п роводи мости\ поз вол нет определить содержание свободных ионов. Что касаеця криоскопии и измерения давления паров,, то в этих случаях ионные пары ведут себя как отдельные частицы. Константы диссоциации ионных нар известны для многих растворителей. Как правило, при низких концентрациях в-растворителях с диэлектрической проницаемостью больше 40-находятся главным образом диссоциированные ионы. В растворителях с диэлектрической проницаемостью ниже 10—15 даже при высоком разбавлении свободные ионы почти полностью отсутствуют.

В любом растворителе чем больше ионы, тем больше степень диссоциации. Например, константа равновесия образования ионной пары К в нитробензоле равна 80 для хлорида тет-раэтиламмония, 62 для бромида, слишком мала, чтобы определить ее для пнкрата тетра-н бутнламмония, но равна 7 для пнкрата тетраэтиламмония (26].

Поведение и структура ионных пар и более сложных комплексов широко изучались такими методами, как коидуктомет-рия, спектроскопия комбинационного рассеяния, спектроскопия в УФ-, видимой и ИК-областях, а также методами электронного и ядерного магнитного резонанса. Эти методы и полученные результаты описаны в обзоре i[22].

Растворители представляют собой однородные структурированные субстанции. При контакте между молекулами растворителя и растворенного вещества имеют место ион-дипольные взаимодействия. Степень сольватации указывает на количество таких взаимодействий. Взаимодействие тем больше, чемг ближе контакт между растворимым веществом н растворителем. Дипольные, дисперсионные и индукционные взаимодействия, а также водородные связи действуют совместно с кулоновскими силами, и все вместе определяют стабильность и свойства ионных пар. Поэтому большое значение имеет природа-как растворенного вещества, так и растворителя. Сольватная. оболочка уменьшает подвижность и коэффициенты диффузии как ионов, так и ионных пар. Способность апротонного растворителя к сольватированию не зависит от диэлектрической проницаемости, но в значительной степени определяется его элект-ронодонорными или электроноакцсигорными свойствами. Рол»

IS

Глава 1. Ионныеяары и экстракция ишшш пар

1.2. Ионные пары в органической фаве

19

растворителей в органической химии посвящен обМшриый об-зор [24].

Как упоминалось выше, большое влияние на /физические и химические свойства ионных пар оказывает взаимодействие их с растворителем. В этом отношении растворители можно подразделить на три группы.

1. Полярные протонные растворители лег*о сольватируют как анионы, так и катионы. Неорганические «атионы взаимодействуют со свободными электронными парами, тогда как анионы сольватируются путем образования водородных связей. Крупные четвертичные аммониевые ионы не сольватируются {37] или по крайней мере сольватируются не специфично, т. е. сильного непосредственного взаимодействия с растворителем не существует. В этих растворителях имеет

страница 3
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

Скачать книгу "Межфазный катализ" (6.37Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
s68 стул
купить шашку такси марсель
невидимый магнит на номера
wizardfrost.ru

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(24.05.2017)