химический каталог




Практическое руководство по синтезу и исследованию свойств полимеров

Автор Д.Браун, Г.Шердрон, В.Керн

исчезновением во время ингибирования удобно следить фотометрически [7]; в этом случае, однако, реакция ингибирования, по-видимому, не является простой рекомбинацией стабильного свободного радикала с активным концом растущей цепи.

Ингибиторы часто используют для быстрого прекращения полимеризации, например при кинетических исследованиях. Другим важным применением ингибиторов является их использование для стабилизации мономеров во время хранения. Под действием кислорода воздуха в результате автоокисления могут образоваться перекиси, которые медленно разлагаются даже при низких температурах, генерируя свободные радикалы и инициируя полимеризацию. Для подавления преждевременной полимеризации в мономер вводят ингибитор в качестве стабилизатора (см. раздел 2.1.5.4), который, конечно, необходимо удалять перед полимеризацией мономера (см., например, опыт 3-01). Эффективность действия ингибиторов прежде всего зависит от их строения. Поскольку ингибитор расходуется в реакции с растущими радикалами, продолжительность действия ингибитора, т. е. индукционный период, зависит от концентрации ингибитора (см. опыт 3-19).

Молекулярный кислород играет особую роль при полимеризации. Как известно, кислород довольно быстро реагирует с углеводородными радикалами с образованием перекисных радикалов:

R. + оа >- R—О—ОПоэтому, естественно, что кислород необходимо удалять при свободнорадикальной полимеризации. Перекисные радикалы значительно менее активны, чем свободные углеводородные радикалы, тем не менее они способны к дальнейшему присоединению молекул мономера с повторным образованием углеводородных радикалов. Последние вновь могут реагировать с кислородом. Таким образом, полимеризация в присутствии кислорода значительно замедляется по сравнению с реакцией в отсутствие кислорода. В основном происходит чередующееся присоединение молекул мономера и кислорода, в результате которого образуются полимерные перекиси (сополимеризация с молекулярным кислородом):

CHs-CH-O-O-CHj—СН-О-О

Только после полного исчерпания молекулярного кислорода начинается обычная полимеризация. Однако дополнительное термическое разложение присутствующих перекисей на активные радикалы увеличивает скорость реакции. Следовательно, молекулярный кислород вначале ингибирует полимеризацию, а затем после его исчерпания увеличивает скорость реакции.

В отличие от ионной полимеризации свободнорадикальная полимеризация осуществляется только для ненасыщенных соединений.

Эта реакция может быть инициирована термически, УФ:лучами или другим более жестким излучением. Обычно используют перекисные инициаторы или азосоединения, а также окислительно-восстановительные системы.

3.1.1. Полимеризация, инициированная перекисными соединениями

Органические и неорганичесие перекисные соединения широко используются в качестве инициаторов свободнорадикальной полимеризации. Наибольшее распространение получили следующие органические перекисные соединения: гидроперекиси, диалкильные и диацильные перекиси, а также некоторые перэфиры. Поскольку эти соединения растворимы не только в органических растворителях, но и в большинстве мономеров, они могут использоваться при проведении полимеризации в растворах, в массе, а также при суспензионной полимеризации. Разложение этих соединений на свободные радикалы может осуществляться либо нагреванием, либо облучением, либо с помощью окислительно-восстановительной реакции (см. раздел 3.1.3). Скорость разложения органических перекисных соединений зависит от их строения и температуры. Гидроперекиси обычно менее стойки, чем диацильные или диалкильные перекиси. Полимеризация, инициированная термическим разложением органических персоединений, как правило, протекает с обычными скоростями лишь при температурах выше 50 °С. Исключение составляют некоторые перэфиры (например, диэтилпероксидикарбонат), быстро распадающиеся даже при комнатных температурах, вследствие чего их следует использовать только в разбавленных растворах.

Одной из наиболее широко применяемых перекисей является перекись бензоила, которую вводят в реакционеную смесь в количестве 0,1—1,0% (масс.) (см. опыты 3-02, 3-05 и 3-06). В интервале температур 50—80°С перекись бензоила в растворах распадается в основном с получением бензоатных радикалов, от которых при более высоких температурах отщепляется двуокись углерода, образуя фенильные радикалы:

118

119

Хлор- или бромзамещенная перекись бензоила распадается значительно быстрее незамещенной перекиси. Замещенные перекиси используются также для введения в макромолекулы аналитически определяемых галогенсодержащих концевых групп с целью облегчения измерения молекулярной массы полученного полимера (см. раздел 2.3.2.2). При использовании перекиси бензоила и большинства ее замещенных производных выполняются соотношения ?(3-6) и (3-8), согласно которым скорость полимеризации возрастает, а степень полимеризации уменьшается с увеличением концентрации инициатора.

Органические перекисные соединения в основном применяются

при полимериз

страница 47
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

Скачать книгу "Практическое руководство по синтезу и исследованию свойств полимеров" (5.11Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
минвата роквул цена
амадео матрасы 140х190
установка vp 80-50-19468
билеты на цска

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(26.05.2017)