![]() |
|
|
Практическое руководство по синтезу и исследованию свойств полимеровя — высокомолекулярной. По Фуксу [83], исследуемый полимер осаждают тонким слоем на очищенную алюминиевую фольгу (толщина примерно 20—50 мкм при общей поверхности 600—1000 см2) при погружении в 10%-ный раствор полимера (0,5—1 г) в легколетучем растворителе. Фольгу вынимают из раствора и дают растворителю медленно испариться. Нанесенное вещество должно составлять примерно 100 мг на 100 см2 фольги. Это значение может быть как угодно уменьшено, но увеличено не более чем на 50%. После сушки пленки в вакууме фольгу взвешивают и разрезают на полосы, которые помещают в эрленмейеровскую колбу (250 мл) или в особый сосуд для фракционирования (рис. 24, б), после чего последовательно обрабатывают смесями растворитель — осадитель. Благодаря небольшой толщине полимерной пленки (5—10 мкм) равновесие достигается за 5—10 мин. По истечении этого времени раствор декантируют (или сливают), а растворенный полимер получают выпариванием. Таким способом из 1 г полимера можно выделить 10—20 фракций за сравнительно короткое время (1—2 сут) (см. опыт 3-16). 82 Особенно четкие фракции нолучаются при фракционировании на колонке. При этом полимер наносят на инертный носитель (стеклянные шарики, песок или кизельгур) и в таком виде загружают в вертикальную колонку. Затем колонку промывают специально подобранной смесью растворитель — осадитель, состав которой непрерывно изменяется; вытекающую жидкость собирают в фракционный приемник, фракционирование на колонке проводят либо при постоянной температуре [84], либо в условиях градиентов температуры и концентрации одновременно [85]. Фракционирование при постоянной температуре проще в аппаратурном отношении, так как в качестве колонки можно использовать стеклянную трубку с рубашкой для термостатирующей жидкости. Разновидностью метода фракционирования на колонке является гель-хроматопрафия [86]. В качестве разделительного вещества применяют органические или неорганические вещества (например, силикагель) пористой структуры с размером пор, зависящим от плотности сшивок и условий получения. Для фракционирования полимеров, растворимых в воде, чаще всего применяют набухший в воде декстран с различной степенью сшивания (сефадекс). Для растворов полимеров в органических растворителях применяют сшитые полистиролы или сополимеры метилметакрилата с этилен-гликольдиметакрилатом. Образец полимера растворяют, заливают в колонку и элюируют, используя тот же самый растворитель. Небольшие молекулы полимера свободно диффундируют внутрь геля. Размеры некоторых молекул оказываются настолько большими, что им не удается проникнуть внутрь пор, в результате чего они первыми выходят из колонки при элюировании. Продолжительность элюирования фракций возрастает с уменьшением размера макромолекул. Существует критическое значение молекулярной массы, ниже которого макромолекулы полимера могут проникать в поры сетки и поэтому могут быть разделены. Молекулы большего размера уже не могут быть разделены, так как они не могут диффундировать в гель. Частота сетки геля и критическое значение молекулярной массы связаны между собой простой зависимостью: чем чаще сетка, тем меньше критическое значение молекулярной массы. Эффективность гель-хроматографического фракционирования определяется не только природой геля, но и геометрией колонки. Полный внутренний объем пор геля V( определяется количеством сухой смолы и ее способностью к набуханию, которая, в свою очередь, зависит от элюирующего растворителя. Общий объем геля V( складывается из собственного объема гелевого скелета Vg, внутреннего объема пор геля Vi и свободного объема V0 между частицами геля. Для макромолекул с молекулярной массой выше критической элюирующий объем Ve равен свободному объему V0, поскольку макромолекулы такого размера не проникают в поры геля и проходят через колонку без задержки, что позволяет легко определить V0. Молекулы, размер которых настолько мал, что они могут проникать во все поры, могут находиться как в любой части свободного объема V0, так и в любой части объема пор Vi, и поэтому для их элюирования необходимо пропустить через колонку элюирующий объем: Ve = V, + Vl (2-14) Для молекул промежуточного размера доступна только доля Kd(0^Kd^l) внутреннего объема пор V< и весь свободный объем V0, поэтому элюирующий объем для них равен: V.-Vo + KtV, (2-15) Константа Kd представляет собой коэффициент объемного распределения между полным внутренним объемом V( я той его частью, которая может быть занята молекулой растворенного вещества KdVi. Числовое значение Kd зависит в первую очередь от размера молекул вещества и в гораздо меньшей степени от их формы. Концентрацию полимера в растворе, вытекающем из колонки, определяют спектроскопически, рефрактометрически или посредством осаждения растворенного полимера. Для установления связи между элюирующий объемом и молекулярной массой, зависящей от природы полимера, характеристик геля и многих других факторов, проводят калибровку колонки по образцам полимера с точно известными молекулярными массами. З |
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
Скачать книгу "Практическое руководство по синтезу и исследованию свойств полимеров" (5.11Mb) |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|