![]() |
|
|
Биологическая химияяются с белками (гистонами), упакованными в бороздках, обеспечивая тем самым стабильность третичной структуры ДНК. Степень суперспираль-ности (наличие супервитков) молекулы ДНК обычно устанавливают по изменению константы седиментации в определенных условиях. Суперспи-рализация ДНК может быть нарушена разрывом в одной из цепей или в обеих цепях двойной спирали под действием ДНКазы или при обработке интеркалирующими соединениями. Под интеркаляцией подразумевают встраивание плоских ароматических колец между стопками пар азотистых оснований ДНК. Интеркаляция может быть вызвана антибиотиками и кра* Разработан щадящий метод выделения нативной молекулы ДНК с использованием протеиназы К и ДСН. Выделенный из клеток почек обезьяны препарат ДНК имел необычно высокую мол. массу — 2* 10, однако даже в этом случае молекулярная масса на несколько порядков меньше, чем мол. масса ДНК in vivo, исчисляемая 1010 — 1011. Рис. 3.3. Третичная структура ДНК (схема). 1-линейная одноцепочечная ДНК - бактериофаг фХ174 и другие вирусы; 2- кольцевая одлоце почечная ДНК вирусов и митохондрий; 3 - кольцевая двойная спираль ДНК. а. б Рис. 3.4. Третичная структура РНК в растворе в зависимости от ионной силы, температуры и рН среда (схема) (по А.С. Спирину и Л.П. Гаври ^1^^^ШШЫШшШМШШ^^^\^Ш^'^ ловой). а - компактная палочка, б - компактный Рис. 3.2. Модель молекулы ДНК. клубок; в - развернутая цепь. сителями; в интактных клетках она может быть обусловлена ароматическими кольцами амнокислот, что имеет, очевидно, определенный биологический смысл в проблеме белково-нуклеинового узнавания. Данные о структуре тРНК свидетельствуют о том, что нативные молекулы тРНК имеют примерно одинаковую третичную структуру, которая отличается от плоской структуры «клеверного листа» большой компактностью за счет складывания различных частей молекулы. Следует указать на существование у ряда вирусов (реовирус, вирус раневых опухолей растений и др.) природных двухцепочечных РНК, обладающих однотипной с ДНК структурой. При физиологических значениях рН среды, ионной силы и температуры создаются условия для образования в одно-цепочечных матричных и рибосомных РНК множества участков с двойной спиралью («шпильки») и дальнейшего формирования комплементарных участков, определяющих в известной степени жесткость их третичной структуры (рис. 3.4). В настоящее время получены доказательства значимости ван-дер-ваальсовых (диполь-дипольных и лондоновских) связей между азотистыми основаниями в стабилизации общей пространственной конфигурации нуклеиновых кислот. Глава 4 ФЕРМЕНТЫ Современная биология говорит на языке энзимологии. А.Е. Браунштейн ПОНЯТИЕ О ФЕРМЕНТАХ Ферменты, или энзимы, представляют собой высокоспециализированный класс веществ белковой природы, используемый живыми организмами для осуществления с высокой скоростью многих тысяч взаимосвязанных химических реакций, включая синтез, распад и взаимопревращение огромного множества разнообразных химических соединений. Жизнь и многообразие ее проявлений—сложная совокупность химических реакций, катализируемых специфическими ферментами. И.П. Павлов считал ферменты «возбудителями всех химических превращений» у живых существ. Как известно, важнейшим свойством живого организма является обмен веществ, ускоряющим аппаратом, основой молекулярных механизмов интенсивности которого являются ферменты. «Вся тайна животной жизни,— писал Д.И. Менделеев,— заключается в непрерывных химических превращениях веществ, входящих в состав животных тканей». В настоящее время теоретические и практические достижения энзимологии используются в решении многих проблем биохимии и молекулярной биологии, включая их сравнительное и эволюционное рассмотрение. «Под знаком молекулярной энзимологии,— говорил на III Всесоюзном биохимическом съезде (1974) А.Е. Браунштейн,— развивается и встречное течение — реконструкция или интеграция, восходящая от молекулярного яруса к высшим уровням структурно-функциональной организации живого и пронизывающая весь комплекс актуальных проблем биологии и медицины». Ферменты обеспечивают осуществление таких важнейших процессов жизнедеятельности, как экспрессия (реализация) наследственной информации, биоэнергетика, синтез и распад биомолекул (обмен веществ). Изучение их способствует проникновению в суть и сокровенные тайны того загадочного явления, которое мы называем жизнью. Этими обстоятельствами может быть объяснено пристальное внимание исследователей к проблемам структуры, функций и молекулярных механизмов действия ферментов. От неорганических катализаторов ферменты отличаются рядом характерных особенностей. Прежде всего ферменты чрезвычайно эффективны и проявляют в миллионы и миллиарды раз более высокую каталитическую активность в условиях умеренной температуры (температура тела), нормального давления и в области близких к нейтральным значениям рН среды. Ферменты отличаются высокой специфичностью действия в отношении как химической природы субстрата, так и типа реакции, т.е. каждый ф |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|