![]() |
|
|
Биологическая химияь для выяснения зависимости между структурой и биологической ролью нуклеиновых кислот. Нет сомнения, что именно на этом пути научного поиска исследования нуклеиновых кислот будут сделаны открытия, имеющие огромное значение для биологии, медицины и всей науки о живом. Эпохальное открытие принципа комплемент арности нуклеиновых кислот позволило проникнуть в тайны не только тонкой структуры этих биополимеров, но и механизмов синтеза и воспроизведения биологических макромолекул. Нуклеиновые кислоты выполняют ряд важных биологических функций, не свойственных другим полимерным веществам. В частности, они обеспечивают хранение и передачу наследственной информации и принимают непосредственное участие в механизмах реализации этой информации путем программирования синтеза всех клеточных белков. Структурные компоненты нуклеиновых кислот выполняют, кроме того, функции кофакторов (коэнзим А, уридин-дифосфатглюкоза и др.), алло стер ических эффекторов, входят в состав коферментов (никотинамидадениндинуклеотид, флавинадениндинуклеотид и др.), принимая тем самым непосредственное участие в обмене веществ, а также в аккумулировании (накоплении), переносе и трасформации энергии. Они являются предшественниками вторичных посредников (мессенд-жеров) —циклических мононуклеотидов (цАМФ и цГМФ), выполняющих важную функцию в передаче внутриклеточных сигналов. Подробно основные функции нуклеиновых кислот рассмотрены в главе 14. Методы выделения нуклеиновых кислот. При изучении химического состава и строения нуклеиновых кислот перед исследователем всегда стоит задача выделения их из биологических объектов. В главе 2 было указано, что нуклеиновые кислоты являются составной частью сложных белков — нуклеопротеинов, содержащихся во всех клетках животных, бактерий, вирусов, растений. Нуклеиновые кислоты обладают сильно выраженными кислыми свойствами (обусловлены остатками ортофосфорной кислоты в их составе) и при физиологических значениях рН несут отрицательный заряд. Этим объясняется одно из важных свойств нуклеиновых кислот—способность к взаимодействию по типу ионной связи с основными белками (гистонами), ионами металлов (преимущественно с Mg2+), а также с полиаминами (спермин, спермидин) и путресцином. Поэтому для выделения нуклеиновых кислот из комплексов с белками необходимо прежде всего разрушить эти сильные и многочисленные электростатические связи между положительно заряженными молекулами белков и отрицательно заряженными молекулами нуклеиновых кислот. Для этого измельченный путем гомогенизации биоматериал обрабатывают крепкими солевыми растворами (10% раствор хлорида натрия) с последующим осаждением нуклеиновых кислот этанолом. В настоящее время для выделения нуклеиновых кислот в нативном состоянии пользуются более «мягким» фенольным методом, основанным на обработке нейтрального забуференного раствора нуклеопротеинов фенолом. Обычно эту процедуру проводят в присутствии веществ, вызывающих денатурацию белкового компонента, например до-децилсульфата (ДСН) или салицилата натрия, затем смесь подвергают центрифугированию. При этом денатурированный белок попадает в фе-нольную фазу, а нуклеиновые кислоты остаются в водной среде, из которой их осаждают на холоде добавлением 2—3 объемов этанола. Этим методом удается получить достаточно очищенные препараты нуклеиновых кислот. В настоящее время применяют ряд усовершенствованных методов разделения нуклеиновых кислот на фракции из суммарного препарата, полученного описанным методом. Это прежде всего хроматография на геле фосфата кальция, ионообменная хроматография (в качестве адсорбентов используют ДЭАЭ-целлюлозу, ДЭАЭ-сефадекс и др.), ультрацентрифугирование в градиенте плотности сахарозы, хроматография по сродству на белковых носителях, фильтрация через гели агарозы и сефарозы, гель-электрофорез и др. После получения нуклеиновых кислот в чистом виде их подвергают гидролизу для изучения химического состава. Для этих целей используют ферментативные методы (экзо- и эндонуклеазы), а также чисто химические методы гидролиза, в частности нагревание нуклеиновых кислот с хлорной кислотой. ХИМИЧЕСКИЙ СОСТАВ НУКЛЕИНОВЫХ КИСЛОТ Нуклеиновые кислоты (ДНК и РНК) относятся к сложным высокомолекулярным соединениям, состоят из небольшого числа индивидуальных химических компонентов более простого строения. Так, при полном гидролизе нуклеиновых кислот (нагревание в присутствии хлорной кислоты) в гидролизате обнаруживают пуриновые и пиримидиновые основания, углеводы (рибоза и дезоксирибоза) и фосфорную кислоту *: ДНК __ИГК НаР04 НзРО. Д<;.« т :ИриГ* >:;н Рибоза Дцепии Аденин Гуанин Гуанин Цитозин Цитозин Тимин Урацил В молекуле ДНК углевод представлен дезоксирибозой, а в молекуле РНК—рибозой, отсюда их названия: дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК) кислоты. Кроме того, они содержат фосфорную кислоту, по два пуриновых и по два пиримидиновых основания; различия только в пиримидиновых основаниях: в ДНК содержится тимин, а в РНК — урацил. В составе ДНК и РНК открыты так |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|