![]() |
|
|
Биологическая химияний (BE) — показатель избытка или недостатка буферных мощностей (ВВ—NBB). ДЫХАТЕЛЬНАЯ ФУНКЦИЯ КРОВИ Сущность дыхательной функции крови состоит в доставке кислорода от легких к тканям и углекислого газа от тканей к легким (табл. 17.4). Перенос кислорода кровью Кровь осуществляет дыхательную функцию прежде всего благодаря наличию в ней гемоглобина. Физиологическая функция гемоглобина как переносчика кислорода основана на способности обратимо связывать кислород. Поэтому в легочных капиллярах происходит насыщение крови кислородом, а в тканевых капиллярах, ]де парциальное давление кислорода резко снижено, осуществляется отдача кислорода тканям. В состоянии покоя ткани и органы человека потребляют около 200 мл кислорода в минуту. При тяжелой физической работе количество потребляемого тканями кислорода возрастает в 10 раз и более (до 2—3 л/мин). Доставка от легких к тканям такого количества кислорода в виде газа, физически растворенного в плазме, невозможна вследствие малой растворимости кислорода в воде и плазме крови (табл. 17.5). Таблица 17.5. Коэффициенты абсорбции (растворимое™) вдыхаемых газов (в миллилитрах на 1 мл среды при давлении 1013,3 г Па - 760 мм рт. ст.) Среда ГС Газ о2 со2 N2 Вода 0 20 0,049 0,031 1,71 0,87 0,024 0,016 Плазма 40 38 0,023 0,024 0,53 0,51 0,012 0,012 Исходя из приведенных в табл. 17.5 данных, а также зная Рга в артериальной крови — 107—120 гПа (80—90 мм рт. ст.), нетрудно видеть, что количество физически растворенного кислорода в плазме крови не может превышать 0,3 об. %. При расчете кислородной емкости крови этой величиной можно пренебречь. Итак, функцию переносчика кислорода в организме выполняет гемоглобин. Напомним, что молекула гемоглобина построена из 4 субъединиц (полипептидных цепей), каждая из которых связана с гем ом (см. главу 2). Следовательно, молекула гемоглобина имеет 4 гема, к которым может присоединяться кислород, при этом гемоглобин переходит в оксигемо-глобин. Гемоглобин человека содержит 0,335% железа. Каждый грамм-атом железа (55,84 г) в составе гемоглобина при полном насыщении кислородом связывает 1 грамм-молекулу кислорода (22400 мл). Таким образом, 100 г гемоглобина могут связывать 0,335-22400 Апя = 134 мл кислорода, 55 j 34 Содержание кислорода Рис. 17.6. Кривая насыщения гемоглобина кислородом. Объяснение в тексте. а каждый грамм гемоглобина — 1,34 мл кислорода. Содержание гемоглобина в крови здорового человека составляет 13—16%, т.е. в 100 мл крови 13—16 г гемоглобина. При Р02 в артериальной крови 107—120 гПа гемоглобин насыщен кислородом на 96%. Следовательно, в этих условиях 100 мл крови содержит 19—20 об. % кислорода: 154,34*96 100 19,3 мл кислорода (в среднем 19-20 об. %). В венозной крови в состоянии покоя Р02 = 53,3 гПа, и в этих условиях гемоглобин насыщен кислородом лишь на 70—72%, т.е. содержание кислорода в 100 мл венозной крови не превышает 15*1,34*70 100 14,1 мл кислорода (около 14 об. %). Артериовенозная разница по кислороду * будет около 6 об. %. Таким образом, за 1 мин ткани в состоянии покоя получают 2ГО—240 мл кислорода (при условии, что минутный объем сердца в покое составляет 4 л). Возрастание интенсивности огаслителъных процессов в тканях, например при усиленной мышечной работе всегда связано с более полным извлечением кислорода из крови. Кроме того, при физической работе резко увеличивается скорость кровотока. Зависимость между степенью насыщения гемоглобина кислородом и Р02, можно выразить в виде кривой насыщения гемоглобина кислородом, или кривой диссоциации оксигемоглобина, которая имеет S-образную форму и характеризует сродство гемоглобина к кислороду (рис. 17.6). Характерная для гемоглобина S-образная кривая насыщения кислородом свидетельствует, что связывание первой молекулы кислорода одним из * Артериовенозная разница по кислороду в разных органах далеко не одинакова и зависит от уровня метаболизма органа. В миокарде она составляет 12, в мозге - б, в пищеварительном тракте - 3, в почках - 1,5 об. %. гемов гемоглобина облегчает связывание последующих молекул кислорода тремя другими оставшимися темами. Долгое время механизм, лежащий в основе этого эффекта, оставался загадкой, так как, по данным рентгеноструктурного анализа, 4 гема в молекуле гемоглобина довольно далеко отстоят друг от друга и вряд ли могут оказывать взаимное влияние. В последнее время принято следующее объяснение происхождения S-образ-ной кривой. Считают, что тетрамерная молекула гемоглобина способна обратимо распадаться на две половинки, каждая из которых содержит одну сс-цепь и одну р-цепь: аар(3 Молекула гемоглобина ? сф-ьсф Две половинки молекулы гемоглобина При взаимодействии молекулы кислорода с одним из четырех гемов гемоглобина кислород присоединяется к одной из половинок молекулы гемоглобина (допустим, к а-цепи этой половинки). Как только такое присоединение произойдет, а-полипептидная цепь претерпевает конформа-ционные изменения, которые передаются на тесно связанную с ней р-цеп |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|