![]() |
|
|
Биологическая химияспецифическое участие принимает особый белок— катаболитный ге нактивирующий белок (от англ. catabolite gene activation protein, сокращенно CAP). Этот белок, взаимодействующий с цАМФ, образует комплекс, способствующий прикреплению РНК-полимеразы к промоторному участку генома. В присутствии комплекса САР-цАМФ фермент может начать транскрипцию оперона, включая структурные гены, т.е. в клетках имеется еще один, дополнительный САР-цАМФ-регулятор, действующий, скорее всего, в качестве положительного регулятора, поскольку его присутствие необходимо для начала экспрессии гена. Таким образом, концепция Ф. Жакоба и Ж. Моно о механизме проявления (экспрессии) активности генов признана одним из блестящих достижений молекулярной биологии. Она явилась логическим развитием многочисленных исследований, проведенных генетиками и биохимиками в предшествующие десятилетия. Регуляция экспрессии активности генов у эукариот осуществляется значительно более сложным путем, поскольку процессы транскрипции и трансляции разделены не только пространственно ядерной биомембраной, но и во времени. Эта регуляция базируется как минимум на 6 уровнях сложных биологических процессов, определяющих скорость синтеза и распада генетического продукта (рис. 14.14). Для большинства эукариотических клеток, как и клеток прокариот, стадия инициации транскрипции является основной, главной регуляторной точкой экспрессии активности генов. Тем не менее имеются существенные различия: во-первых, место процессов транскрипции (в ядре) и трансляции (в цитоплазме); во-вторых, активирование транскрипции у эукариот связано с множеством сложных изменений структуры хроматина в транскрибируемой области; в-третьих, в эукариотических клетках превалируют положительные регуляторные механизмы над отрицательными. Положительная или отрицательная регуляция определяется типом белков, вовлеченных в механизм регуляции. Получены доказательства существования минимум 3 типов белков, участвующих в регуляции процесса инициации транскрипции, опосредованного через РНК-полимеразу: специфические факторы, репрессоры и активаторы. Первые вызывают изменение специфичности РНК-полимеразы к данному промотору или группе промоторов; репрессоры связываются с промотором, блокируя тем самым доступ РНК-полимеразы к промотору; активаторы, напротив, связываются вблизи промоторного участка, повышая связывание промотора и РНК-полимеразы. В многоклеточных организмах среднее число регуляторных сайтов для одного гена минимум равно пяти; положительные регуляторные белки связываются со своими специфическими последовательностями в структуре ДНК (вероятнее всего, посредством водородных связей между амидной группой Глн или Асн и пуриновыми и пиримидиновыми основаниями нуклеотидов). Следует указать еще на один момент, почему эукариоти-ческая клетка использует положительные механизмы регуляции экспрессии генов. Подсчитано, что в геноме человека содержится около 100000 генов, соответственно каждая клетка при отрицательном механизме регуляции могла бы синтезировать 100000 разных репрессоров, причем в достаточных количествах. При положительном механизме регуляции большинство генов в принципе неактивно, соответственно молекула РНК-полимеразы не связывается с промотором и клетка синтезирует ограниченный и избирательный круг активаторных белков, необходимых для инициации транскрипции. Рис, 14.14 Схематиче ское изображение гре!уггяции экспрессии активности гена у эукариот. У эукариот выделены и охарактеризованы также пять регуляторных белков, получивших название транскрипционных факторов (TF: ПА, ПВ, IID, ПЕ и IIF). Они необходимы для узнавания участка (сайта) ДНК, названного TATA (concensus последовательности, ТАТАААА). Детальный молекулярный механизм действия факторов трансжршщии пока не раскрыт. Более подробно в структурном и функциональном отношении у эукариот изучена группа белков, получивших название белков—активаторов транскрипции. Эти белки имеют специфические структурные домены для связывания с другими, но определенными регуляторными нуклеотиднъгми последовательностями в молекуле ДНК. В частности, они содержат домен, специфически связывающийся с ДНК, и один или несколько доменов, необходимых для активирования или взаимодействия с другими регуляторными белками. Среди этих белков — активаторов транскрипции имеются белки, содержащие богатые глутамином домены (до 25%) и богатые пролином домены. Следует отметить, однако, что некоторые из них или почти все регуляторные белки активируют транскрипцию не прямо, а опосредованно—через промежуточные белки, названные коактиваторами. Происхождение и механизм действия последних также не выяснены. Современные знания о механизмах регуляции экспрессии генов на посттранскрипционном и посттрансляционном уровнях (см. рис. 14.4) были подробно рассмотрены ранее (см. главы 13 и 14). Рассмотрим кратко вопрос о регуляции процессов дифференцировки клеток высших организмов. ДНК, присутствующая во всех соматических клетках, вероятнее всего, имеет одинаковую первичную |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|