![]() |
|
|
Биологическая химияе диффундируют через такую мембрану, в то время как низкомолекулярные вещества легко проникают через нее в окружающую среду. Метод кристаллизации белков основан на достижении критической точки начала осаждения белка из раствора сульфата аммония при медленном повышении температуры. Уже получены сотни кристаллических белков*. Однако не всякий кристаллический белок является гомогенным, поскольку при одной и той же концентрации раствора сульфата аммония могут кристаллизоваться близкие по размерам и массе разные белки. Наилучшие результаты при освобождении белков от низкомолекулярных примесей получают с помощью гельхроматографии и ультрафильтрации. Последняя основана на продавливании растворов белка через специальные мембраны, задерживающие белковые молекулы, что позволяет не только освободить белковые растворы от низ ко молекулярных примесей, но и концентрировать их. Определение гомогенности белков На заключительном этапе выделения и очистки белков исследователя всегда интересует вопрос о гомогенности полученного белка. Нельзя оценивать гомогенность индивидуального белка только по одному какому-либо физико-химическому показателю. Для этого пользуются разными критериями. Из огромного числа хроматографических, электрофоретиче-ских, химических, радио- и иммунохимических, биологических и гравитационных методов наиболее достоверные результаты при определении гомогенности белка дают ультрацентрифугирование в градиенте плотности сахарозы или хлорида цезия, диск-электрофорез в полиакриламидном геле, изо электрическое фокусирование, иммунохимические методы и определение растворимости белка. Действительно, если при гель-электрофорезе белок движется в виде одной узкой полосы и в этой зоне сосредоточена его биологическая активность (ферментативная, гормональная, токсическая * Первый кристаллический фермент уреаза был получен Д. Самнером в 1926 г. ж т.д.), то эти данные с большой долей вероятности могут свидетельствовать об однородности исследуемого белка. В основе iпммунохимического метода контроля гомогенности исследуемого белка лежит реакция прецшштации его с соответствующей антисывороткой, полученной от иммунизированных этим белком животных. Для строгого доказательства гомогенности белка требуется одновременное использование нескольких методов. Не потерял своего значения и метод кристаллизации белков с использованием сульфата аммония, а также метод определения растворимости белка. Последний, предложенный еще Д. Нортропом *, основан на правиле фаз Гиббса, согласно которому растворимость чистого вещества при данных условиях опыта зависит только от температуры, но не зависит от количества вещества, находящегося в твердой фазе. Метод может быть выполнен сравнительно легко и быстро в микромасштабах. Обычно определяют растворимость увеличивающегося количества исследуемого белка при постоянном количестве растворителя. АМИНОКИСЛОТНЫЙ СОСТАВ БЕЛКОВ Несмотря на то что первая амин окисл ота - глицин - была выделена А. Бра-конно еще в 1820 г. из кислотного гидролизата желатина, полный аминокислотный состав белков был расшифрован только к 30-м годам XX в. Большая заслуга в этом принадлежит работам Н.Н. Любавина, который в 1871 г. установил, что под действием ферментов пищеварительных соков белки расщепляются на аминокислоты. Были сделаны два важных вывода: 1) в состав белков входят аминокислоты; 2) методами гидролиза может быть изучен химический, в частности амнокислотный, состав белков. Для изучения аминокислотного состава белков пользуются сочетанием кислотного (НС1), щелочного [Ba(OH)J и, реже, ферментативного гидролиза ** или одним из них. Установлено, что при гидролизе чистого белка, не содержащего примесей, освобождаются 20 различных а-аминокислот. Все другие открытые в тканях животных, растений и микроорганизмов аминокислоты (более 300) существуют в природе в свободном состоянии либо в виде коротких пептидов или комплексов с другими органическими веществами. а-Аминокислоты представляют собой производные карбоновых кислот, у которых один водородный атом, у а-углерода, замещен на ам1шогруппу (—NH2), например: JO О Жирная кислота а-Аминокислота * В лаборатории Нортропа в 1930-1931 гг. впервые получены в химически индивидуальном и кристаллическом состоянии пепсин, химотрипсин и трипсин. ** При кислотном и щелочном гидролизе белков наблюдается почти полный распад триптофана и цисгеина, поэтому для их определения предложены специальные методы. Следует подчеркнуть, что ice аминокислоты, входящие п состав природных белков, являются а-аминокислотами, хотя аминогруппа в свободных аминокарбоновых кислотах может находиться, как увидим ниже, в у-, 6-и ?-положениях. Классификация аминокислот Все встречающиеся в природе аминокислоты обладают общим свойством — амфотерностыо (от греч. amphoteros — двусторонний), т.е. каждая аминокислота содержит как минимум одну кислотную и одну основную группы. Общий тип строения а-аминокислот может быть представлен в следующем виде; Как видно из общей формулы, |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|