![]() |
|
|
Биоорганическая химия ферментативного катализай наступает такой скачок, называется критической концентрацией ми-целлообразования (ККМ). Мицеллы обычно образуются в водном растворе; полярные и неполярные группы находятся соответственно на поверхности и внутри мицелл. Известны и обращенные мицеллы, т. е. агрегаты поверхностно-активных веществ, в неполярных растворителях, в которых полярные и неполярные группы расположены соответственно внутри и на поверхности мицелл. За счет неполярных взаимодействий мицеллы связывают множество органических субстратов, что приводит к ускорению химических реакций (или порой к их замедлению). Катализируемые мицеллами реакции обычно протекают на поверхности мицелл. Более того, мицеллярный катализ носит определенные «ферментоподобные» черты; например, кинетика мицеллярных процессов подчиняется уравнению Михаэлиса— Ментен , и катализ характеризуется заметной стереоспецифич-ностью. Все это указывает на то, что мицеллы можно использовать для моделирования ферментативного катализа [22]. Если реагент или реагенты входят внутрь мицеллы или располагаются на ее поверхности, то на скорость реакции могут влиять по крайней мере три фактора: 1) сближение, 2) электростатические эффекты и 3) эффекты микросреды. Сближение проявляется при концентрировании или разбавлении реагентов вследствие их включения в мицеллярную фазу. На скорости .реакций могут также влиять изменения стабильности либо реагентов, либо переходных состояний из-за электростатических эффектов, обусловленных зарядом мицеллы, или контактных взаимодействий с составляющими мицеллу молекулами. По поводу электростатических эффектов в мицеллах можно сделать следующие обобщения. Катионные мицеллы детергентов ускоряют реакции нейтральных органических молекул с анионными реагентами, но замедляют реакции нейтральных органических молекул с катионны-ми реагентами. С другой стороны, анионные мицеллы детергентов ускоряют реакции нейтральных органических молекул с катионными реагентами, но замедляют реакции нейтральных органических молекул с анионными реагентами. Удивительно, что это правило выполняется для огромного числа реакций. Например, катионный детергент цетилтриметиламмонийбромид (ЦТАБ) ускоряет реакции некоторых красителей с гидроксид-ионом в четыре — пятьдесят раз, а щелочной гидролиз /г-нитрофенилгексаноата — почти в пять раз. Однако гидролиз (кислотный) метил-о-бензоата инги-бируется ЦТАБ, рис. 12.14. В то же время такие анионные детергенты, как лаурилсульфат натрия (NaLS) или олеилсуль-фат натрия (NaOS), ускоряют кислотный гидролиз метил-о-бензоата (рис. 12.14), причем каталитический эффект достигает восьмидесяти раз [23]. В области концентраций ниже критической концентрации ?мицеллообразования для NaLS (0,0016 М) (на рис. 12.14 ие показана) константа скорости гидролиза метил-о-бензоата пропорциональна концентрации детергента в четвертой степени и возрастает очень слабо при увеличении концентрации детергента. В этой области концентраций NaLS существует, по-видимому, в мономерной форме. Высокая чувствительность скороста реакции к концентрации детергента указывает на то, что субстрат индуцирует образование мицелл, в которых соотношение-NaLS : субстрат составляет 4:1. Щелочной гидролиз метил-1-нафтоата в 50%-ном водном диоксане зависит как от природы растворителя, так и от электростатических факторов. Если проводить реакцию в присутствии лаурилтриметиламмонийхлорида, то ее скорость несколько увеличивается, но в присутствии лаурилсульфата натрия, напротив, сильно падает. Рассмотрим сначала, какое действие оказывает природа углеводородного радикала. В системе метил-1-нафтоат — углеводород вероятность обнаружить углеводород в непосредственной близости от сложного эфира значительно выше соответствующей мольной доли. Следовательно, микроскопическое окружение сложного эфира в присутствии углеводорода гораздо менее полярно, чем в его отсутствие. Иными словами, диэлектрическая проницаемость микроокружения ниже. Можно ожидать, что в таких условиях гидроксид-ион будет атаковать сложный эфир с меньшей эффективностью. В том случае, если добавленный углеводород несет электрический заряд, то распределение молекул растворителя не изменится, и, следовательно, вновь сложноэфирный субстрат будет окружать среда с пониженной диэлектрической проницаемостью. Электрический заряд молекулы детергента также должен оказывать влияние на характер реакции: отрицательный заряд будет отталкивать, а положительный — притягивать гидроксид-ион. Таким образом, в случае солей органических анионов эффект окружения и электростатический эффект действуют в одном направлении, вызывая сильное ингибирование, а в случае солей органических катионов эффект окружения и электростатический эффект действуют в разных направлениях, что приводит к некоторому увеличению скорости реакции, если последний эффект доминирует над первым. Влияние структуры субстрата становится ясным при исследовании зависимости скорости реакции от способа взаимодействия субстрата с мицеллами. Например, бромид цетилтрим |
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
Скачать книгу "Биоорганическая химия ферментативного катализа" (2.87Mb) |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|