![]() |
|
|
Биоорганическая химия ферментативного катализает первый кинетический порядок как по сложному эфиру, так и по амину. Величины констант скорости в случае диаминов выше ожидаемых на основании уравнения Бренстеда для моноаминов в десять раз, что указывает на возможное участие в процессе концевой аминогруппы или иона аммония, выступающих как общее основание или общая кислота (11.4 и 11.5 на схеме (11.6)]. Заметим, однако, что в случае диаминов возможно проявление другой бренстедовской зависимости [9]. с n-нитрофенилацетатом в хлорбензольном растворе идет по маршруту второго порядка по амину, хотя реакция с бензамидином имеет уже первый порядок по амину [10]. Константа скорости второго порядка ами-нолиза бензамидином по крайней мере в 15000 раз выше константы скорости второго порядка аминолиза я-бутиламином. Эти экстраординарные различия объясняются бифункциональной природой бензамидина. Как показано в уравнении (11.7),. легкое протекание реакции объясняется тем, что в переходном состоянии (в определенном смысле эквивалентном тетраэдриче-скому промежуточному продукту) не происходит образования заряда. Нуклеофильная атака я-бутиламинным мономером приводит к развитию» заряда, которое тормозится аполярными растворителями. К тому же оба каталитических центра содержатся в одной молекуле бензамидина. н Н R /N—C—OR »? продукты Ph-C %0H I H (H.7) 11.3.2. Бифункциональный катализ Классический пример бифункционального катализа — это реакция мутаротации a-D-тетраметилглюкозы под действием 2-пиридона (2-гидроксипиридина) в бензольном растворе [11]. При низкой концентрации катализатора процесс подчиняется кинетике реакции второго порядка; в то же время этот процесс в присутствии смеси фенола и пиридина следует кинетике реакции третьего порядка. Например, при 0,05 М концентрации 2-гидроксипиридина скорость мутаротации в бензоле примерно в 50 раз выше скорости реакции в присутствии смеси фенола и лиридина. Такое рассмотрение не учитывает различия в кинетических порядках обоих процессов, и первоначально этот результат был интерпретирован как простое замещение фенола и пиридина на 2-гидроксипиридин, в котором азотный и гидроксиль-ный центры входят в состав одной молекулы. Позднее, однако, было найдено, что тетраметилглюкоза и 2-гидроксипиридин в бензоле образуют комплекс, связывание в котором осуществляется за счет водородных связей. Необычайно высокое удельное вращение растворов тетраметил-0(+)-глюкозы, содержащих 2-гидроксипиридин, свидетельствует об образовании комплекса. Пиранозоподобный полуацеталь 2-тетрагидропираноль частично ингибирует катализируемую 2-гидроксипиридином мутаротацию, хотя ни фенол, ни пиридин такого действия не оказывают. Ингибирование может быть следствием конкурентного комплексообразования с катализатором. На основании этих данных механизм процесса, катализируемого 2-гидроксипиридином, а также близкими по структуре бифункциональными соединениями, можно представить в виде (11.8) Этот механизм чрезвычайно похож на механизм реакции бензамидина с я-нитрофенилацетатом в хлорбензольном растворе [схема (11.7)]. Можно думать, что любая система с двумя электроотрицательными атомами в 1,3-положении по отношению друг к другу с внутренним углом между ними менее 180° (а не более 180°, как в имидазоле), обладающая одной двойной связью, будет соответствовать требованиям, предъявляемым к бифункциональному катализатору реакций карбонильных соединений. Действительно, бензойная кислота, пикриновая кислота и 2-аминопиридин обладают необычайно высокой каталитической активностью. Мутаротация a-D-тетраметилглюкозы в растворе нитромета-на подчиняется тем же закономерностям, что и в бензольном растворе. Каталитическая активность карбоновых кислот превосходит активность фенолов близкой кислотности примерно в 400 раз [12]. При этом карбоновые кислоты проявляют свойства бифункциональных катализаторов: Бифункциональный катализ кислотно-основного типа существует в апротонных средах (примеры для протонных сред даны в разд. 10.1.1), однако о его протекании в гидроксилсодер-жащих растворителях с уверенностью говорить нельзя. Возможно, бифункциональный катализ проявляется при гидролизе ими-нолактона — N-фенилиминотетрагидрофурана [13]. Эта реакция сопровождается образованием анилина и бутиролактона или a-гидроксибутиранилида в зависимости от характера распада промежуточного тетраэдрического продукта. Фосфатный буфер сильно способствует образованию анилина. (11.10) Его эффективность в ускорении превращения иминолактона в анилин примерно в 240 раз выше по сравнению с имидазоль-ным буфером. Этот результат сразу исключает возможность нуклеофильного и классического общего основного катализа фосфат-ионом, так как в случае нуклеофильного катализа активность имидазола должна быть существенно более высокой (хотя величины их рКа близки), а в случае общего основного катализа активность имидазола должна быть близка к активности фосфат-иона (гл. 7 и 5 соответственно). Однако на основании только стерических факторов фосфат-ион должен быть гораздо более эффект |
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
Скачать книгу "Биоорганическая химия ферментативного катализа" (2.87Mb) |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|