химический каталог




Биоорганическая химия ферментативного катализа

Автор М.Бендер, Р.Бергерон, М.Комияма

кий ток. Для того чтобы объяснить это кажущееся противоречие, следует предположить, что перед прохождением следующего протона цепочка молекул воды возвращается в исходное состояние. Такой обратный переход происходит за счет вращения молекул воды в кристалле. Таким образом, перенос протона вдоль цепи водородных связей в сочетании с переориентацией молекул воды обеспечивает возможность миграции протона через весь объем кристалла льда.

н и и и и н

II 1111 —Н - 0-Н---0—н -о-н-о-н—о-н ~о-н-~

н и и и н

I I I I I ,—н-о—н-о—н-о—н-о—н-о-н

Скорость процесса прохождения электрического тока через кристалл льда лимитируется стадией переноса протона по цепи водородных связей. Такой перенос осуществляется по «неклассическому» механизму, вероятно, за счет туннельного эффекта [10] (преодоление обычного активационного барьера путем проникновения небольшого иона сквозь узкий энергетический барьер). Подвижность протона в кристалле льда всего на 2— 3 десятичных порядка меньше подвижности электрона в металлах (табл. 2.1).

Хотя в воде отсутствует столь совершенная система водородных связей, как в кристаллах льда, обеспечивающая функционирование изображенной на схеме (2.2) цепи переноса протонов, ясно, что высокая подвижность протонов в воде обусловлена действием сходного механизма.

Анализируя приведенные в табл. 2.1 константы скорости реакций с участием ионов гидроксония и гидроксида, необходимо учитывать действие следующих факторов: 1) пространственные эффекты (стерические эффекты и влияние симметрии), 2) электростатические взаимодействия, 3) наличие водородных связей в субстрате, 4) перераспределение электронов в ходе реакции.

Реакция ионов гидроксония с фторид-ионами протекает несколько быстрее, чем реакция ионов гидроксония с гидросульфид-ионами. Небольшое различие в наблюдаемых скоростях в этом случае может быть обусловлено действием чисто статистических факторов, поскольку фторид-ион располагает четырьмя парами электронов, способными присоединять протон, тогда как в гидросульфид-ионе таких пар только три. Электростатические взаимодействия оказывают лишь слабое влияние на константу скорости, что, по-видимому, связано с высокой диэлектрической проницаемостью воды, выполняющей здесь роль растворителя. В грубом приближении можно считать, что константа скорости переноса протона от иона гидроксония уменьшается в два раза при введении в молекулу каждого дополнительного положительного заряда, если размер молекулы при этом не изменяется. Так, например, реакции иона гидроксония с комплексами ионов металлов различного заряда характеризуются следующими значениями константы скорости: [л/(моль-с)] для НОСи(Н20)5+ Ю10, для HOCo(NH3)52+ 5-109 и для HNRPt(en)23+ 1,9-109.

Наличие в молекуле субстрата водородной связи приводит в отличие от отмеченных выше небольших эффектов к сильному снижению константы скорости переноса протона на растворитель или другую молекулу. Два примера такого рода представлены в табл. 2.1: реакции гидроксид-иона с салицилат-ионом и с производным о-гидроксиазобензола. Наличие в молекулах этих субстратов внутримолекулярных водородных связей вызывает снижение константы скорости реакции в 103—105 раз по сравнению с «обычным» переносом протона. Из схемы (2.1) следует, что перенос протона с этих двух субстратов на гидроксид-ион возможен только после разрыва внутримолекулярной водородной связи. Таким образом, изменение константы скорости переноса протона по сравнению с реакцией, контролируемой диффузией, в отсутствие внутримолекулярных водородных связей отражает различие в прочности между внутри- и межмолекулярными водородными связями.

Другой пример сильного влияния на константу скорости переноса протона дают реакции кислоты с гидроксид-ионом и сопряженного основания с ионом гидроксония. Если протекание этих реакций связано с большими изменениями в распределении электронной плотности, то их скорость может оказаться существенно ниже скорости реакции, контролируемой диффузией. Рассмотрим реакции с участием ацетилацетона, представляющего собой карбокислоту (или С—Н-кислоту) (табл. 2 1). В отличие от реакции с «нормальными» кислород- и азотсодержащими кислотами константы скорости реакций с участием карбокислоты намного меньше, чем в случае реакций, контролируемых диффузией. Реакция енолят-иона ацетилацетона с ионом гидроксония, в результате которой образуется енол, не сопровождается сколько-нибудь существенным перераспределением электронной плотности, и ее константа скорости, контролируемая диффузией, равна 1010 л/(моль-с). Приводящая к образованию кетона реакция енолят-иона с ионом гидроксония, напротив, протекает со значительным перераспределением электронной плотности и характеризуется константой скорости, равной всего лишь 107 л/(моль-с). Для реакции гидроксид-иона с енольной формой ацетилацетона, в молекуле которой имеется внутримолекулярная водородная связь, константа скорости составляет 107 л/(моль-с), тогда как в случае реакции гидроксид-иона с

страница 10
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Скачать книгу "Биоорганическая химия ферментативного катализа" (2.87Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
баскетбольные мячи размер 3
посмотреть линзы шарингана
Электрические котлы Protherm Скат 12 KR 13
интернет магазин посуды для индукционных плит

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(03.12.2016)