химический каталог




Расчеты аппаратов кипящего слоя

Автор А.П.Баскаков, И.П.Мухленов, Б.С.Сажин, В.Ф.Фролов и др.

процесса и временем пребывания в плотной фазе. Доля газа, проходящего через слой в пузырях, пропорциональна избытку скорости газа над началом взвешивания Aw = w — шо. Исследованиями структуры слоя в плоской модели было показано, что величина Aw в полной мере характеризует гидродинамический режим для частиц разного фракционного состава [1]. Времена пребывания газа в плотной и дискретной фазах различны и зависят от рабочей высоты слоя, скорости газа в плотной фазе и средней скорости подъема пузырей, соответственно. Выход продукта и избирательность каталитического процесса в КС следует рассматривать в зависимости от линейной скорости газа, начальной высоты слоя, диаметра частиц, скорости начала взвешивания и факторов, определяющих скорость процесса на зерне катализатора в плотной фазе.

Рост линейной скорости газа приводит к увеличению газонаполнения, расширения слоя, доли газа, проходящего слой в пузырях, размера и скорости подъема пузырей и к уменьшению количества пузырей и времени их пребывания в слое [1, 6]. Все это, как правило, обусловливает снижение степени превращения реагентов (рис. 5.18).

Имеются указания [1, 11], что для реакторов КС существует оптимальное значение линейной скорости газа, при котором степень превращения достигает максимального значения. Наличие такого оптимума можно объяснить следующим образом. При скоростях газа, близких к началу взвешивания, вероятно, образование устойчивых газовых каналов, недостаточно интенсивное перемешивание частиц могут вызывать нарушение изотермичности реактора. Увеличение расхода газа интенсифицирует перемешивание катализатора и разрушает каналы, что обеспечивает выравнивание температуры, лучший контакт реагентов с катализатором и повышение степени превращения. С дальнейшим возрастанием скорости газа все большая его доля проходит через слой в пузырях и, следовательно, выход продукта уменьшается.

Характер влияния скорости газа на выход продукта не зависит от наличия организующей насадки, но выход продукта в организованном КС выше за счет улучшения условий контактирования (рис. 5.18, а и б).

Диаметр частиц влияет на значение скоростей начала взвешивания и уноса, а также на степень использования внутренней поверхности катализатора. Сопоставление показателей процесса на катализаторе различного зернения целесообразно при одинаковых величинах избытка скорости над началом взвешивания. При увеличении в определенных пределах размера частиц, а следовательно, скорости начала взвешивания и рабочей скорости газа снижаются время пребывания реагентов в плотной фазе, степень использования внутренней поверхности катализатора и скорость процесса. Но одновременный и существенный рост доли газового потока, проходящей в плотной фазе, проводит, как это показано на рис. 5.18, в, к повышению степени превращения реагентов, что вместе с возрастанием рабочей скорости газа обеспечивает увеличение производительности реактора. Укрупнение частиц целесообразно до некоторого предела, после которого выход продукта будет снижаться за счет уменьшения скорости процесса и времени контакта газа в плотной фазе. Увеличение выхода продукта с ростом размера зерен катализатора наблюдается и в других процессах [11, 22, 23]. Для частиц различного размера при одинаковых числах псевдоожижения не обеспечивается подобие гидродинамической обстановки в слое [1]. Поэтому рассмотрение влияния размера частиц на показатели процесса при фиксированном значении числа псевдоожижения менее наглядно.

Начальная высота слоя определяет время контакта реагентов с катализатором в плотной части слоя, средний размер неоднородностей и время их пребывания в слое. В отличие от фильтрующего слоя, в свободном КС вследствие влияния гидродинамической обстановки достижение степеней превращения, близких к равновесным значениям, практически невозможно (рис. 5.19). При низких высотах слоя выход продукта зависит как от скорости процесса в плотной части слоя, так и скорости межфазного массообмена. Например, скорость окисления диоксида серы достаточно велика, и концентрация триоксида серы в плотной фазе приближается к равновесной уже при начальной высоте слоя, равной 0,25 м. При больших высотах слоя процесс начинает лимитироваться скоростью межфазного газообмена. Благодаря более интенсивному межфазному газообмену в организованном КС, выход продукта увеличивается, как это показано на рис. 5.19.

Таким образом, при некоторой начальной высоте слоя, значение которой зависит от скорости процесса и времени контакта, в плотной части слоя химическая реакция достигает равновесия, а выход продукта определяется его концентрацией в пузырях. Дальнейшее увеличение начальной высоты слоя приводит к росту пузырей за счет потока газа из плотной части слоя, а абсолютное количество непрореагировавших реагентов и степень превращения в разреженной фазе изменяются незначительно, что согласуется

Рис, 5,20. Изменение степени превращения (х) диоксида серы по текущей высоте организованного КС [22]:

/—равновесная степень превращения; зна

страница 118
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

Скачать книгу "Расчеты аппаратов кипящего слоя" (4.83Mb)


[каталог]  [статьи]  [доска объявлений]  [прайс-листы]  [форум]  [обратная связь]

 

 

Реклама
pws-351-1h
моноколесо на литейном
билет на концерт лепса в москве в ноябре
авито купить журнальный столик

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 



Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(21.10.2017)